Android中的Matrix(矩阵)
写在前面
看这篇笔记之前先看一下参考文章,这篇笔记没有系统的讲述矩阵和代码的东西,参考文章写的也有错误的地方,要辨证的看。
- 如何计算矩阵乘法
- android matrix 最全方法详解与进阶(完整篇)
- Android Matrix 最全方法详解与进阶
- 1-4 Canvas 对绘制的辅助 clipXXX() 和 Matrix
矩阵的乘法
比如有矩阵A和矩阵B,他们分别为:
可以看到A为2行3列的矩阵,B为3行2列的矩阵,矩阵乘法符合下面的规则:
- 只有A的列数和B的行数相等,A和B才可以做乘法
- A*B的结果C是2行2列的矩阵,行数等于A的行数,列数等于B的列数
- 结果矩阵C的第一行第一列数值为A的第一行和B的第一列中的数字分别相乘后再相加。其他行列结果依次类推
- 矩阵的乘法不满足交换律,即
A*B != B*A
- 矩阵的乘法满足结合律
M‘ = T*(M*R) = T*M*R = (T*M)*R
详细信息可以看这里:如何计算矩阵乘法
Android中常用的四种矩阵变换
Android中使用3x3的矩阵进行图形的变换,它看起来大概是下面这样:
在Android中,使用一个3x1的矩阵来表示一个点:
x,y分别代表x,y轴上的坐标,而1代表屏幕在z轴上的坐标为默认的。如果将1变大,那么屏幕会拉远, 图形会变小。
平移(Translate)
图例:
错切(Skew)
水平错切
图例:
垂直错切
图例:
复合错切
图例:
旋转(Rotate)
图例:
缩放(Scale)
图例:
Matrix的组合
应用矩阵进行图形变换的主要原因,是因为矩阵是可以通过矩阵的乘法进行组合使用的,如果想对canvas绘制的bitmap时,先平移T(dx, dy),再旋转R(θ),最后缩放S(k1,k2),就可以将三个变换矩阵相乘,M‘ = ABC,再对canvas应用M’矩阵即可。
Matrix的坐标系
矩阵的操作可以看作是以坐标原点为原点的坐标系在三维空间中做的变换,不同于canvas的屏幕坐标系坐标系,矩阵Matrix的坐标系为左手坐标系:
这个坐标系对应的每个轴的旋转方向(从原点看出去,每个轴的旋转方向都是逆时针):
Matrix的操作可以看做是对上面左手坐标系的变换
因为Matrix变换后是对每个canvas的点起作用,其实也可以看做对这个三维坐标系起了作用,canvas绘制的是三维坐标系上的图像对canvas二位坐标系的投影。
所以,可以用自己的左手模拟进行平移旋转等操作,更加直观的想象变换后的效果。
Matrix的左乘和右乘
在Android中,有关矩阵的操作都是成对的,比如preTranslate(float dx, float dy)和postTranslate(float dx, float dy),通过看api的介绍,如果原矩阵为M,那么pre表示的是左乘,post表示右乘:
preTranslate : M' = M * T(dx, dy) // 左乘
postTranslate: M' = T(dx, dy) * M // 右乘
因为矩阵的变换是顺序执行的,所以在平时最常用的应该是pre左乘,所有的变换操作都依次执行,比如canvas常用的translate等变换方法其实就是左乘。右乘其实就是在所有操作之前增加一步操作,合理的运用右乘可以方便代码的编写。
比如:图形变换是以左边原点为原点的,所以旋转、缩放等功能应用到canvas.drawBitmap()方法时(因为bitmap常从原点往右下方画),图像表现出来的结果就特别奇怪,需要将canvas的坐标系移动到图像的中心点再操作然后再把坐标系移回去,那么如果只用pre左乘的话,代码是这样的:
Matrix matrix = new Matrix();
matrix.preTranslate(pivotX,pivotY);
// 各种操作,旋转,缩放,错切等,可以执行多次。
matrix.preTranslate(-pivotX, -pivotY);
如果合理使用右乘,那么代码就成了:
Matrix matrix = new Matrix();
// 各种操作,旋转,缩放,错切等,可以执行多次。
matrix.postTranslate(pivotX,pivotY);
matrix.preTranslate(-pivotX, -pivotY);
减少了postTranslate和preTranslate之间的距离。
Android中的Matrix(矩阵)的更多相关文章
- Android中图像变换Matrix的原理、代码验证和应用(一)
第一部分 Matrix的数学原理 在Android中,如果你用Matrix进行过图像处理,那么一定知道Matrix这个类.Android中的Matrix是一个3 x 3的矩阵,其内容如下: Matri ...
- 【CSS3】 理解CSS3 transform中的Matrix(矩阵)
理解CSS3 transform中的Matrix(矩阵) by zhangxinxu from http://www.zhangxinxu.com 本文地址:http://www.zhangxinxu ...
- Android中图像变换Matrix的原理、代码验证和应用(二)
第二部分 代码验证 在第一部分中讲到的各种图像变换的验证代码如下,一共列出了10种情况.如果要验证其中的某一种情况,只需将相应的代码反注释即可.试验中用到的图片: 其尺寸为162 x 251. 每种变 ...
- Android中图像变换Matrix的原理、代码验证和应用(三)
第三部分 应用 在这一部分,我们会将前面两部分所了解到的内容和Android手势结合起来,利用各种不同的手势对图像进行平移.缩放和旋转,前面两项都是在实践中经常需要用到的功能,后一项据说苹果也是最近才 ...
- 理解CSS3 transform中的Matrix(矩阵)
一.哥,我被你吓住了 打架的时候会被块头大的吓住,学习的时候会被奇怪名字吓住(如“拉普拉斯不等式”).这与情感化设计本质一致:界面设计好会让人觉得这个软件好用! 所以,当看到上面“Matrix(矩阵) ...
- 理解CSS3 transform中的Matrix(矩阵)——张鑫旭
by zhangxinxu from http://www.zhangxinxu.com本文地址:http://www.zhangxinxu.com/wordpress/?p=2427 一.哥,我被你 ...
- css3 transform中的matrix矩阵
CSS3中的矩阵CSS3中的矩阵指的是一个方法,书写为matrix()和matrix3d(),前者是元素2D平面的移动变换(transform),后者则是3D变换.2D变换矩阵为3*3, 如上面矩阵示 ...
- Matrix: android 中的Matrix (android.graphics.Matrix) (转)
本篇博客主要讲解一下如何处理对一个Bitmap对象进行处理,包括:缩放.旋转.位移.倾斜等.在最后将以一个简单的Demo来演示图片特效的变换. 1. Matrix概述 对于一个图片变换的处理,需要Ma ...
- Android 中的 Matrix
Matrix 是 Android SDK 提供的一个矩阵类,它代表一个 3 X 3 的矩阵 Matrix主要可以对图像做4种基本变换 Translate 平移变换 Rotate 旋转变换 Scale ...
随机推荐
- 洛谷P1311 选择客栈
P1311 选择客栈 题目描述 丽江河边有n 家很有特色的客栈,客栈按照其位置顺序从 1 到n 编号.每家客栈都按照某一种色调进行装饰(总共 k 种,用整数 0 ~ k-1 表示),且每家客栈都设有一 ...
- linux别名防删除
最近有不相信rm -rf 了,虽然恢复了但是很难受啊 加个别名吧, 1.查看系统别名配置 alias 2.配置别名(临时生效) alias rm='echo do not use rm command ...
- 配置文件中取值: spring配置文件中util:properties和context:property-placeholder
转载大神 https://blog.csdn.net/n447194252/article/details/77498916 util:properties和context:property-plac ...
- 练习四十六:列表排序,删除list中重复的元素
方法一:使用集合set;将list直接转换为set a = [1,3,4,3,5,7] a = list(set(a)) print(a) 执行结果: [1, 3, 4, 5, 7] 方法二:直接排序 ...
- 注意sqlite3和java的整数数据类型的区别
作为新手的我,没有考虑数据库和java的数据类型的对应上的区别: sqlite3的数据类型和java数据类型对应上要小心,特别是整数类型. java 中int类型4位存储,范围 -2^31到2^31- ...
- ORACLE数据库的备份和还原。
Oracle数据库备份与还原命令 数据导出: 1 将数据库TEST完全导出,用户名system 密码manager 导出到D:\daochu.dmp中 exp system/manager@TEST ...
- 数据库的 2个参数 NLS_LENGTH_SEMANTICS 说明,comment 说明
############### sample 1: NLS_LENGTH_SEMANTICS 1.数据库字符集选择的是NLS_CHARACTERSET=UTF8,如果NLS_CHARACTERSET= ...
- .NET Core微服务 权限系统+工作流(二)工作流系统
一.前言 接上一篇 .NET Core微服务 权限系统+工作流(一)权限系统 ,再来一发 工作流,我在接触这块开发的时候一直好奇它的实现方式,翻看各种工作流引擎代码,探究其实现方式,个人总结出来一个核 ...
- Maven的学习资料收集--(二)安装m2eclipse插件
在Eclipse中可以安装Maven插件,可以更方便的使用: 官网地址:http://www.eclipse.org/m2e/ 可以在线安装或者离线下载,之前在线安装总是失败,可能是网速的原因,找到了 ...
- Java排序算法(三)
Java排序算法(三) 三.Java排序算法总结 从这三组时间复杂度对比中,可以看出,堆排序和归并排序是不管在什么情况下发挥稳定的,快速排序好的时候表现如天才,坏情况下比较差强人意,甚至在等待排序个数 ...