UOJ#126【NOI2013】快餐店
【NOI2013】快餐店
YY了一个线段树+类旋转卡壳的算法。骗了55分。还比不上$O(n^2)$暴力T^T
题目实际上是要找一条链的两个端点,链的中点处建快餐店。要求这两个端点的最短距离为其他所有点对的最短距离的最大值。
- 这条链不经过环,那答案就是环上挂的某个子树的子树直径。至少大于等于最大的树直径。树DP一发得到Ans1
- 经过环,显然不会饶环一圈。这个链必定由这样构成:x,y为环上两点。x子树最长链->x-y最短路-y子树最长链。可以枚举断掉一条边,然后求树的直径。取min。
第二种情况具体做法:枚举环上的边i-i+1。
$定义S_U(x)表示S_U(x)+sum[x]为到1的最长链,$
$P_U(x)表示P_U+sum[n]-sum[x]为到1的最长链即环的另一侧。$
$ S_V(x)表示前缀到x的最长链+x子树最长链,P_V(x)表示后缀的。sum[i]为环上前i条边的边权和$
直径$=max\{S_U(i)+P_U(i+1)+sum[n]-当前该边边权,S_v(i),P_V(i+1)\}$ Ans2=min{Ans2,直径}
$Ans=\frac{max\{Ans1,Ans2\}}{2.0}.$
然后有一些细节,建议自己画画图分析下。
#include<cstdio>
#include<algorithm> typedef long long ll;
template
inline void read(T&x)
{
x=0;bool f=0;char c=getchar();
while((c<'0'||c>'9')&&c!='-')c=getchar(); if(c=='-')f=1,c=getchar();
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
x=f?-x:x;
} const int MAXN(100010),LEN(200010);
const ll INF(0x7fffffffffffffff);
int n,a[MAXN],b[MAXN],l[MAXN];
struct Node{int nd,nx,co;}bot[MAXN<<1];int tot,first[MAXN];
void add(int a,int b,int c){bot[++tot]=(Node){b,first[a],c};first[a]=tot;}
int st[MAXN],pos[MAXN],last[MAXN],tp;bool bf[MAXN],vis[MAXN];
int Ring[LEN],dis[LEN],Rsize;
void DFS(int x,int f)
{
st[++tp]=x;pos[x]=tp;
for(int v=first[x];v;v=bot[v].nx)
if(bot[v].nd!=f)
{
if(pos[bot[v].nd])
{
if(dis[1])continue;
for(int i=pos[bot[v].nd];i<=tp;i++)
{
Ring[++Rsize]=st[i];bf[st[i]]=1;
dis[Rsize]=last[st[i]];
}
dis[1]=bot[v].co;
}else
{
last[bot[v].nd]=bot[v].co;
DFS(bot[v].nd,x);
}
}
--tp;pos[x]=0;
}
void umax(ll &a,ll b){if(a<b)a=b;}
ll max(ll a,ll b){return a>b?a:b;}
ll min(ll a,ll b){return a<b?a:b;}
ll lm[MAXN],Ans,Ans2,all;
void DP(int x)
{
bf[x]=1;
for(int v=first[x];v;v=bot[v].nx)
if(!bf[bot[v].nd])
{
DP(bot[v].nd);
umax(Ans,lm[x]+lm[bot[v].nd]+bot[v].co);
umax(lm[x],lm[bot[v].nd]+bot[v].co);
}
}
ll Sv[MAXN],Su[MAXN],Pv[MAXN],Pu[MAXN],Sd[MAXN],Pd[MAXN];
void Get_Ring()
{
Ring[Rsize+1]=Ring[1];dis[Rsize+1]=dis[1];
for(int i=1;i<=Rsize;i++)
{
Sv[i]=(i!=1)?Sd[i-1]+dis[i]+lm[Ring[i]]:lm[Ring[i]];
umax(Sv[i],Sv[i-1]);
Sd[i]=(i!=1)?max(Sd[i-1]+dis[i],lm[Ring[i]]):lm[Ring[i]];
Su[i]=max(Su[i-1]-dis[i],lm[Ring[i]]);
all+=dis[i];
}
for(int i=Rsize+1;i>1;i--)
{
Pv[i]=(i!=Rsize+1)?Pd[i+1]+dis[i+1]+lm[Ring[i]]:lm[Ring[i]];
umax(Pv[i],Pv[i+1]);
Pd[i]=(i!=Rsize+1)?max(Pd[i+1]+dis[i+1],lm[Ring[i]]):lm[Ring[i]];
if(i!=Rsize+1)Pu[i]=max(Pu[i+1]-dis[i+1],lm[Ring[i]]);
//以防lm[Ring[1]]被加两次
}
Ans2=INF;
for(int i=1;i<=Rsize;i++)
Ans2=min(Ans2,max(max(Sv[i],Pv[i+1]),Su[i]+Pu[i+1]+all-dis[i+1]));
}
int main()
{
// freopen("C.in","r",stdin);
// freopen("C.out","w",stdout);
read(n);
for(int i=1;i<=n;i++)
{
read(a[i]),read(b[i]),read(l[i]);
add(a[i],b[i],l[i]),add(b[i],a[i],l[i]);
}
DFS(1,0);
for(int i=1;i<=n;i++)if(bf[i])DP(i);
Get_Ring();
umax(Ans,Ans2);
printf("%.1lf",(Ans+0.05)/2.0);
return 0;
}
UOJ#126【NOI2013】快餐店的更多相关文章
- bzoj 3242: [Noi2013]快餐店 章鱼图
3242: [Noi2013]快餐店 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 266 Solved: 140[Submit][Status] ...
- [UOJ#122][NOI2013]树的计数
[UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...
- P1399 [NOI2013] 快餐店 方法记录
原题题面P1399 [NOI2013] 快餐店 题目描述 小 T 打算在城市 C 开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小 T 希望快餐店的地址选在离最 ...
- 【BZOJ3242】【UOJ#126】【NOI2013】快餐店
NOI都是这种难度的题怎么玩嘛QAQ 原题: 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. ...
- UOJ #126 【NOI2013】 快餐店
题目链接:快餐店 震惊!某ZZ选手此题调了一天竟是因为……>>点击查看 一般碰到这种基环树的题都要先想想树上怎么做.这道题如果是在树上的话……好像求一遍直径就做完了?答案就是直径长度的一半 ...
- 【BZOJ 3242】【UOJ #126】【CodeVS 3047】【NOI 2013】快餐店
http://www.lydsy.com/JudgeOnline/problem.php?id=3242 http://uoj.ac/problem/126 http://codevs.cn/prob ...
- NOI2013 快餐店
http://uoj.ac/problem/126 总的来说,还是很容易想的,就是有点恶心. 首先,很明显只有一个环. 我们先找出这个环,给各棵树编号id[i],然后各棵树分别以环上的点为根,求出每个 ...
- 【uoj126】 NOI2013—快餐店
http://uoj.ac/problem/126 (题目链接) 题意 求基环树直径. Solution zz选手迟早退役,唉,右转题解→_→:LCF 细节 拓扑排序的时候度数为0时入队.我在想什么w ...
- bzoj3242 [Noi2013]快餐店
Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...
随机推荐
- NIO 之阻塞IO和非阻塞IO(转载)
阻塞模式 IO 我们已经介绍过使用 Java NIO 包组成一个简单的客户端-服务端网络通讯所需要的 ServerSocketChannel.SocketChannel 和 Buffer,我们这里整合 ...
- Beta博客总结
描述项目预期计划和现实进展 冲刺 时间 预期任务以及预估时间 现实完成情况以及实际用时 冲刺1 12.4 修改等级答题界面:30,修改获取用户信息接口:30 修改等级答题界面:60,修改获取用户信息接 ...
- Java8 使用 stream().filter()过滤List对象(查找符合条件的对象集合)
内容简介 本文主要说明在Java8及以上版本中,使用stream().filter()来过滤一个List对象,查找符合条件的对象集合. List对象类(StudentInfo) public clas ...
- 一起来造一个RxJava,揭秘RxJava的实现原理
一类创业者基本都是做传统行业的,这类创业者非常大胆,也非常舍得投入.很多时候他们如果看到或者想到一个商机,就会投入成千上百万,先把产品做出来,然后再去想怎么开拓市场. 这类传统行业的老板,问我最多的问 ...
- tp5模型事件回调函数中不能使用$this
tp5模型事件回调函数中不能使用$this,使用会报错,涉及到数据库操作使用Db类,不能使用$this->save()之类的方式 如果回调函数中需要使用类内函数,需要将函数定义为static,通 ...
- thinkphp5.1页面页面模板及参数配置
success和error跳转的模板在thinkphp/tpl/dispatch_jump.tpl 配置参数在thinkphp\library\traits\controller\jump.php文件 ...
- PAT甲级——1093 Count PAT's (逻辑类型的题目)
本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/93389073 1093 Count PAT's (25 分) ...
- PAT甲级——1097 Deduplication on a Linked List (链表)
本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/91157982 1097 Deduplication on a L ...
- day02笔记
1.linux环境配置阿里云yum源 linux软件包管理之 yum工具(如同pip3工具) pip3是管理python模块的工具,自动解决模块依赖,降低开发人员心智负担 pip3 install f ...
- 策略模式(Strategy
Strategy 无论什么程序,其目的都是解决问题.而为了解决问题,我们又需要编写特定的算法.使用Strategy模式可以整体地替换算法的实现部分.能够整体地替换算法,能让我们轻松地以不同的算法去解决 ...