Reverse

题目背景

小\(\text{G}\)有一个长度为\(n\)的\(01\)串\(T\),其中只有\(T_S=1\),其余位置都是\(0\)。现在小\(\text{G}\)可以进行若干次以下操作:

• 选择一个长度为\(K\)的连续子串(\(K\)是给定的常数),翻转这个子串。

对于每个\(i,i\in [1,n]\),小\(\text{G}\)想知道最少要进行多少次操作使得\(T_i=1\).特别的,有\(m\)个“禁止位置”,你需要保证在操作过程中\(1\)始终不在任何一个禁止位置上。

输入输出格式

输入格式

从文件reverse.in中读入数据.

第一行四个整数\(n,K,m,S\).

接下来一行\(m\)个整数表示禁止位置。

输出格式

输出到文件reverse.out中.

输出一行\(n\)个整数,对于第\(i\)个整数,如果可以通过若干次操作使得\(T_i=1\),输出最小操作次数,否则输出\(-1\).

说明

对于所有数据,有\(1≤n≤10^5,1≤S,k≤n,0≤m≤n\).

保证\(S\)不是禁止位置,但禁止位置可能有重复。

  • \(\text{Subtask1}(24\%), n≤10\).

  • \(\text{Subtask2}(22\%), n≤10^3\).

  • \(\text{Subtask3}(3\%), k=1\).

  • \(\text{Subtask4}(8\%), k=2\).

  • \(\text{Subtask5}(43\%)\), 没有特殊的约束。


题目其实并不难

发现可以连边直接bfs,可以拿到57pts的暴力分

发现边的数量很多,需要支持动态删点

用两颗平衡树分别维护位置为奇数时和位置为偶数时

然后每次找到可翻转的左边和右边,在平衡上二分,bfs然后删掉点就可以了

每个点只会被删掉一次,复制度差不多是\(O(nlogn)\)的


Code:

#include <cstdio>
#include <cstring>
#include <set>
const int N=1e5+10;
std::set <int> s1,s2;
std::set <int>::iterator it;
int n,k,m,s,l=1,r,q[N<<2],used[N],ans[N],lp,rp,d;
int min(int x,int y){return x<y?x:y;}
int max(int x,int y){return x>y?x:y;}
int main()
{
scanf("%d%d%d%d",&n,&k,&m,&s);
memset(ans,-1,sizeof(ans));
used[s]=1,q[++r]=s,ans[s]=0;
for(int p,i=1;i<=m;i++) scanf("%d",&p),used[p]=1;
for(int i=1;i<=n;i+=2)
{
if(!used[i]) s1.insert(i);
if(!used[i+1]) s2.insert(i+1);
}
while(l<=r)
{
int p=q[l++];
lp=max(p-k+1,max(k-p+1,1)),rp=min(p+k-1,min(2*n+1-k-p,n));
if(p-k&1)//s2
{
it=s2.lower_bound(lp);
while(it!=s2.end()&&(d=*it)<=rp)
{
q[++r]=d;
ans[d]=ans[p]+1;
it++;
s2.erase(d);
}
}
else
{
it=s1.lower_bound(lp);
while(it!=s1.end()&&(d=*it)<=rp)
{
q[++r]=d;
ans[d]=ans[p]+1;
it++;
s1.erase(d);
}
}
}
for(int i=1;i<=n;i++)
printf("%d ",ans[i]);
return 0;
}

2018.10.7

雅礼集训 Day7 T1 Equation 解题报告的更多相关文章

  1. 雅礼集训 Day6 T2 Equation 解题报告

    Equation 题目描述 有一棵\(n\)个点的以\(1\)为根的树,以及\(n\)个整数变量\(x_i\).树上\(i\)的父亲是\(f_i\),每条边\((i,f_i)\)有一个权值\(w_i\ ...

  2. 雅礼集训 Day6 T1 Merchant 解题报告

    Merchant 题目描述 有\(n\)个物品,第\(i\)个物品有两个属性\(k_i,b_i\),表示它在时刻\(x\)的价值为\(k_i\times x+b_i\). 当前处于时刻\(0\),你可 ...

  3. 「雅礼集训 2017 Day2」解题报告

    「雅礼集训 2017 Day2」水箱 我怎么知道这种题目都能构造树形结构. 根据高度构造一棵树,在树上倍增找到最大的小于约束条件高度的隔板,开一个 \(vector\) 记录一下,然后对于每个 \(v ...

  4. 「雅礼集训 2017 Day1」 解题报告

    「雅礼集训 2017 Day1」市场 挺神仙的一题.涉及区间加.区间除.区间最小值和区间和.虽然标算就是暴力,但是复杂度是有保证的. 我们知道如果线段树上的一个结点,\(max=min\) 或者 \( ...

  5. 雅礼集训 Day3 T3 w 解题报告

    w 题目背景 \(\frac 14\)遇到了一道水题,双完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607^2\)眼就切掉了这题,嘲讽了\(\frac 14 ...

  6. 雅礼集训 Day1 T3 画作 解题报告

    画作 题目描述 小\(\mathrm{G}\)的喜欢作画,尤其喜欢仅使用黑白两色作画. 画作可以抽象成一个\(r\times c\)大小的\(01\)矩阵.现在小\(\mathrm{G}\)构思好了他 ...

  7. 雅礼集训 Day5 T3 题 解题报告

    题 题目背景 由于出题人赶时间所以没办法编故事来作为背景. 题目描述 一开始有\(n\)个苹果,\(m\)个人依次来吃苹果,第\(i\)个人会尝试吃\(u_i\)或\(v_i\)号苹果,具体来说分三种 ...

  8. 雅礼集训 Day3 T2 u 解题报告

    u 题目背景 \(\frac 14\) 遇到了一道水题,完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了一眼就切掉了这题,嘲讽了\(\frac 14\)一番就离开了. ...

  9. 雅礼集训 Day3 T2 v 解题报告

    v 题目背景 \(\frac 14\)遇到了一道水题,又完全不会做,于是去请教小\(\text{D}\).小\(\text{D}\)看了\(0.607\)眼就切掉了这题,嘲讽了\(\frac 14\) ...

随机推荐

  1. Delphi7程序调用C#写的DLL解决办法(转)

    近来,因工作需要,必须解决Delphi7写的主程序调用C#写的dll的问题.在网上一番搜索,又经过种种试验,最终证明有以下两种方法可行:    编写C#dll的方法都一样,首先在vs2005中创建一个 ...

  2. UVA_10820_send a table

    When participating in programming contests, you sometimes face the following problem: You know how t ...

  3. Linux相关知识

    1.设置代理 sudo vi /etc/apt/apt.conf Acquire::http::Proxy "http://proxy_address:8080/"; 2.生成 s ...

  4. spring-bean(xml方式管理)

    特点 每一次加载XML文件时候,都会将配置文件中包含的配置实例化. ID与name区别:name不是唯一的,但是可以使用特殊字符 Class:生成类的实例 Bean的作用域: 三种实例化方式 类的构造 ...

  5. Linux - bashrc之alias

    1. cd ~ 2. touch .bashrc // 若该文件不存在的话 3. vim .bashrc ----------------复制粘贴如下文本--------------- # alias ...

  6. 7-1 python 操作redis

    1.安装并导入redis模块 # pip install redis 安装redis模块 import redis # 导入redis模块 2.连接一个或多个redis,指定数据库名,并指定返回字符串 ...

  7. RNN-GRU-LSTM变体详解

    首先介绍一下 encoder-decoder 框架 中文叫做编码-解码器,它一个最抽象的模式可以用下图来展现出来: 这个框架模式可以看做是RNN的一个变种:N vs M,叫做Encoder-Decod ...

  8. c语言可变参数函数

    c语言支持可变参数函数.这里的可变指,函数的参数个数可变. 其原理是,一般情况下,函数参数传递时,其压栈顺序是从右向左,栈在虚拟内存中的增长方向是从上往下.所以,对于一个函数调用 func(int a ...

  9. B1076 Wifi密码 (15分)

    B1076 Wifi密码 (15分) 下面是微博上流传的一张照片:"各位亲爱的同学们,鉴于大家有时需要使用 wifi,又怕耽误亲们的学习,现将 wifi 密码设置为下列数学题答案:A-1:B ...

  10. DNS域名解析服务(bind)

    DNS(Domain Name System,域名系统): 用于管理和解析域名与IP地址对应关系的技术. 简单来说,就是能够接受用户输入的域名或IP地址,然后自动查找与之匹配(或者说具有映射关系)的I ...