[洛谷P3978][TJOI2015]概率论
题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少?
题解:令$f_n$表示$n$个节点的二叉树的个数,$g_n$表示这$f_n$棵二叉树的叶子节点个数和。
打(ti)表(jie)发现:$g_n=n f_{n-1}$
证明:而每棵$n-1$个点的二叉树恰好有$n$个位置可以悬挂一个新的叶子,所以每棵$n-1$个点的二叉树被扩展了$n$次。发现会算重复,但是对于一个有$k$个叶子节点的二叉树,就会被重算$k+1$次,刚好就是叶子节点的个数,所以$g_n=n f_{n-1}$
$$
\dfrac{g_n}{f_n}=\dfrac{nf_{n-1}}{f_n}\\
\begin{align*}
f_n&=\sum\limits_{i=0}^{n-1}f_if_{n-i-1}\\
&=\dfrac{\binom{2n}n}{n+1}\\
&(即卡特兰数)\\
\end{align*}\\
g_n=\dfrac{n(n+1)}{2(2n-1)}
$$
更正常的生成函数证明方法
卡点:未开$long\;long$
C++ Code:
#include <cstdio>
long long n;
int main(){
scanf("%lld", &n);
printf("%.10lf\n", n * (n + 1) / 2.0 / (2.0 * n - 1.0));
return 0;
}
[洛谷P3978][TJOI2015]概率论的更多相关文章
- 洛谷P3973 - [TJOI2015]线性代数
Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...
- 洛谷 P3975 [TJOI2015]弦论 解题报告
P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...
- P3978 [TJOI2015]概率论
\(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...
- luogu P3978 [TJOI2015]概率论
看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...
- [洛谷P3975][TJOI2015]弦论
题目大意:求一个字符串的第$k$大字串,$t$表示长得一样位置不同的字串是否算多个 题解:$SAM$,先求出每个位置可以到达多少个字串($Right$数组),然后在转移图上$DP$,若$t=1$,初始 ...
- 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论
题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...
- 洛谷3973 TJOI2015线性代数(最小割+思维)
感觉要做出来这个题,需要一定的线代芝士 首先,我们来观察这个柿子. 我们将\(B\)的权值看作是收益的话,\(C\)的权值就是花费. 根据矩阵乘法的原理,只有当\(a[i]和a[j]\)都为\(1\) ...
- 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论
题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...
- 【洛谷P3973】[TJOI2015]线性代数(最小割)
洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...
随机推荐
- Hibernate进阶学习4
Hibernate进阶学习4 深入学习hibernate的查询语句 测试HQL查询 package com.hibernate.test; import com.hibernate.domain.Cu ...
- springmvc 前端表单提交给后端出现乱码
在springmvc框架练习中遇到了乱码问题,经过一番网上查找解决方法之后,最后发现是需要在tomcat中的server.xml中添加编码设置 URIEncoding="UTF-8" ...
- 交换机基础设置之vtp管理vlan设置
vtp的设置有三种模式1:server模式,负责创建,删除vlan(服务器模式) 2:client模式,负责接收并转发来自server的信息(客户机模式) 3:transparent模式,只负责转发, ...
- JQuery制作网页—— 第二章 JavaScript操作BOM对象
1.window对象: 浏览器对象模型(BOM)是javascript的组成之一, 它提供了独立与浏览器窗口进行交换的对象,使用浏览器对象模型可以实现与HTML的交互. 它的作用是将相关的元素组织包装 ...
- php-5.6.26源代码 - opcode处理器的注入
.初始化 opcode处理器列表 // main实现在文件“php-5.6.26\sapi\cgi\cgi_main.c” int main(int argc, char *argv[]) { if ...
- nginx+php整合(是让nginx可以运行php,以及下载地址)
下载地址: nginx:http://nginx.org/en/download.html PHP: https://windows.php.net/download/ 都是官网的自己选择版本 安装文 ...
- 嵌入式Linux编译内核步骤 / 重点解决机器码问题 / 三星2451
嵌入式系统更新内核 1. 前言 手里有一块Friendly ARM的MINI2451的板子,这周试着编译内核,然后更新一下这个板子的Linux内核,想要更新Linux Kernel 4.1版本,但是种 ...
- python如果想输出原格式的内容,可以加''' ''',占位符使用方式
print('我考了%d分'%20) msg=''' ---------info of %s----------- name: %s age: %d #字符串不能放到%d处 job: %s salar ...
- linux系统集群之高可用(一)HA
HA(High aviliable)高可用 高可用的需求 在很多公司里面,都会存在着一些不愿被中断的业务,但是由于硬件故障,软件故障,人为因素等各种因素,往往会不经意的造成我们重要的业务中断,因此高可 ...
- python——matplotlib图像的基本处理
1.绘制图像中的点和线 from PIL import Image from pylab import * im = array(Image.open('E:\Python\meinv.jpg')) ...