题目大意:对于一棵随机生成的$n$个结点的有根二叉树,所有不同构的形态等概率出现(这里同构当且仅当两棵二叉树根相同,并且相同节点的左儿子和右儿子都相同),求叶子节点个数的期望是多少?

题解:令$f_n$表示$n$个节点的二叉树的个数,$g_n$表示这$f_n$棵二叉树的叶子节点个数和。

打(ti)表(jie)发现:$g_n=n f_{n-1}$

证明:而每棵$n-1$个点的二叉树恰好有$n$个位置可以悬挂一个新的叶子,所以每棵$n-1$个点的二叉树被扩展了$n$次。发现会算重复,但是对于一个有$k$个叶子节点的二叉树,就会被重算$k+1$次,刚好就是叶子节点的个数,所以$g_n=n f_{n-1}$
$$
\dfrac{g_n}{f_n}=\dfrac{nf_{n-1}}{f_n}\\
\begin{align*}
f_n&=\sum\limits_{i=0}^{n-1}f_if_{n-i-1}\\
&=\dfrac{\binom{2n}n}{n+1}\\
&(即卡特兰数)\\
\end{align*}\\
g_n=\dfrac{n(n+1)}{2(2n-1)}
$$

更正常的生成函数证明方法

卡点:未开$long\;long$

C++ Code:

#include <cstdio>
long long n;
int main(){
scanf("%lld", &n);
printf("%.10lf\n", n * (n + 1) / 2.0 / (2.0 * n - 1.0));
return 0;
}

  

[洛谷P3978][TJOI2015]概率论的更多相关文章

  1. 洛谷P3973 - [TJOI2015]线性代数

    Portal Description 给定一个\(n\times n\)的矩阵\(B\)和一个\(1×n\)的矩阵\(C\).求出一个\(1×n\)的01矩阵\(A\),使得\(D=(A×B-C)×A ...

  2. 洛谷 P3975 [TJOI2015]弦论 解题报告

    P3975 [TJOI2015]弦论 题目描述 为了提高智商,ZJY开始学习弦论.这一天,她在<String theory>中看到了这样一道问题:对于一个给定的长度为\(n\)的字符串,求 ...

  3. P3978 [TJOI2015]概率论

    \(\color{#0066ff}{ 题目描述 }\) 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的 ...

  4. luogu P3978 [TJOI2015]概率论

    看着就是要打表找规律 使用以下代码 for(int i=3;i<=20;i++) { int a1=0,a2=0; for(int j=1;j<i;j++) { for(int k=0;k ...

  5. [洛谷P3975][TJOI2015]弦论

    题目大意:求一个字符串的第$k$大字串,$t$表示长得一样位置不同的字串是否算多个 题解:$SAM$,先求出每个位置可以到达多少个字串($Right$数组),然后在转移图上$DP$,若$t=1$,初始 ...

  6. 并不对劲的bzoj4001:loj2105:p3978:[TJOI2015]概率论

    题目大意 随机生成一棵\(n\)(n\leq10^9)个节点的有根二叉树,问叶子结点个数的期望. 题解 subtask 1:\(n\leq100\),70pts 结论:不同的\(n\)个节点的有根二叉 ...

  7. 洛谷3973 TJOI2015线性代数(最小割+思维)

    感觉要做出来这个题,需要一定的线代芝士 首先,我们来观察这个柿子. 我们将\(B\)的权值看作是收益的话,\(C\)的权值就是花费. 根据矩阵乘法的原理,只有当\(a[i]和a[j]\)都为\(1\) ...

  8. 【BZOJ4001】【Luogu P3978】 [TJOI2015]概率论

    题目描述: Description: Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Ou ...

  9. 【洛谷P3973】[TJOI2015]线性代数(最小割)

    洛谷 题意: 给出一个\(n*n\)的矩阵\(B\),再给出一个\(1*n\)的矩阵\(C\). 求一个\(1*n\)的\(01\)矩阵\(A\),使得\(D=(A\cdot B-C)\cdot A^ ...

随机推荐

  1. VCTransitionsLibrary –自定义iOS交互式转场动画的库

    简介 VCTransitionsLibrary 提供了许多适用于入栈,出栈,模态等场景下控制器切换时的转场动画.它本身提供了一个定义好的转场动画库,你可以拖到自己工程中直接使用;也提供了许多拥有不同转 ...

  2. ES6初识-Decorator

    开始先按照个插件 npm install babel-plugin-transform-decorators-lagacy --save-dev 1.扩充和修改类的行为 2.修改的行为@readonl ...

  3. Dijkstra&&Floyd

    文章来源:(http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html) (以下内容皆为转载) Dijkstra算法 1.定义 ...

  4. Windows下MySQL数据库的安装与关闭开机自启动

    我在学习java,安装数据库时找了很多教程,现在在这里总结一下我安装数据库的过程,我安装的是mysql-5.6.42-winx64版本的. 数据官方下载地址:https://dev.mysql.com ...

  5. 【PHP基础】序列化serialize()与反序列化unserialize()

    序列化serialize()与反序列化unserialize(): 序列化serialize():就是将一个变量所代表的 “内存数据”转换为“字符串”的形式,并持久保存在硬盘(写入文件中保存)上的一种 ...

  6. react native "Unable to resolve module `AccessibilityInfo`

    error: bundling failed: "Unable to resolve module `AccessibilityInfo` from `/Users/apple/Websto ...

  7. 数据库中where与having的区别

    从整体声明角度分析: “where”是一个约束声明,在查询数据库结果返回之前对数据库的查询条件做一个约束,即返回结果之前起作用,“where”后面不能跟聚合函数: “having”是一个过滤声明,在查 ...

  8. POJ3682 概率DP

    King Arthur's Birthday Celebration Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3575 ...

  9. PHP.21-商品信息管理

    商品信息管理 在线增删改查和图片信息管理 主要技术:文件上传.图片缩放.数据库基本操作 思路: 1.设计并创建数据库 库名:demodb 表名:goods 编号(id) 名称(name) 商品类型(t ...

  10. STM32无法使用IAR下载程序问题

    一开始建立了工程,然后程序下载都很正常.不知道什么情况自己下载代码之后,再重新下载代码无法成功. 我按照提示找了一下FlashStm32f30x8.flash这个文件,却发现IAR的目录下没并没有.又 ...