题目描述

输入

输入一个正整数N,代表有根树的结点数

输出

输出这棵树期望的叶子节点数。要求误差小于1e-9

样例输入

1

样例输出

1.000000000


题解

生成函数+导数

先考虑节点个数为$n$的二叉树有多少个:$c_0=1,c_i=\sum\limits_{j=0}^{i-1}c_j*c_{i-j-1}$,显然这是Catalan数。

令其生成函数为$F(x)$,由其递推式可以列出方程:$F(x)=xF(x)^2+1$,解得:

$F(x)=\frac{1-\sqrt{1-4x}}{2x}$

(此处根号前面不能取负号,因为如果取正,分子上常数项不为$0$,就会出现$\frac 1x$项,它在生成函数中是无意义的($f(0)$无意义))

然后设有$i$个节点的二叉树的期望叶子节点个数为$p_i$,那么$p_i=\frac{\sum\limits_{j=0}^{i-1}c_jc_{i-j-1}(p_j+p_{i-j-1})}{c_i}$。

设$t_i=c_ip_i$,那么就有$t_1=1,t_i=\sum\limits_{j=0}^{i-1}(c_jt_{i-j-1}+c_{i-j-1}t_j)=2\sum\limits_{j=0}^{i-1}c_jt_{i-j-1}$。

于是再令$t$的生成函数为$G(x)$,那么有$G(x)=2xF(x)G(x)+x$,解出:

$G(x)=\frac x{\sqrt{1-4x}}$

接下来是戏剧性的一幕:

$(xF(x))'=\frac 1{\sqrt{1-4x}}=\frac{G(x)}x$

这说明F与G的每一项都是有联系的。考虑$xF(x)$的每一项:$x·c_nx^n=c_nx^{n+1}$,求导之后变为$(n+1)c_nx^n$,而等式右端对应的项为$\frac{t_{n+1}x^{n+1}}x=t_{n+1}x^n$,因此说明$t_{n+1}=(n+1)c_n$,即:

$t_n=nc_{n-1}$

又因为$t_n=c_np_n$,所以有:

$p_n=\frac{nc_{n-1}}{c_n}$

而又因为$c$为卡特兰数,因此$c_n=\frac{C_{2n}^n}{n+1}$。所以把式子带进去,就可以推出:

$p_n=\frac{n(n+1)}{2(2n-1)}$

貌似本题如果在考场上的话直接打表都能推出结论吧。。。

代码还要看吗?。。。

#include <cstdio>
int main()
{
double n;
scanf("%lf" , &n);
printf("%.9lf\n" , n * (n + 1) / (2 * n - 1) / 2);
return 0;
}

【bzoj4001】[TJOI2015]概率论 生成函数+导数的更多相关文章

  1. bzoj4001: [TJOI2015]概率论

    题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...

  2. BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)

    设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和.则答案为g(n)/f(n). 显然f(n)为卡特兰数.有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1). 类 ...

  3. 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)

    传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn​表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...

  4. BZOJ4001 [TJOI2015]概率论 【生成函数】

    题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...

  5. BZOJ4001[TJOI2015]概率论——卡特兰数

    题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...

  6. BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)

    Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...

  7. 【BZOJ4001】[TJOI2015]概率论(生成函数)

    [BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...

  8. 4001: [TJOI2015]概率论

    4001: [TJOI2015]概率论 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 262  Solved: 108[Submit][Status] ...

  9. [TJOI2015]概率论

    [TJOI2015]概率论 史上最短黑题 看起来一脸懵逼,没有取模,1e-9 根据期望定义,发现 分母是一个卡特兰数,,,,不能直接算 所以考虑怎么消掉一些东西 gn表示n个点的叶子个数和,fn表示n ...

随机推荐

  1. Webpack4 学习笔记五 图片解析、输出的文件划分目录

    前言 此内容是个人学习笔记,以便日后翻阅.非教程,如有错误还请指出 webpack打包图片和划分文件路径 使用图片的方式 通过 new Image() 在 css中设置 background-imag ...

  2. gd库 给底图写入文字问题

    png-8的图片 设置颜色会返回false,换成png-24的就可以了

  3. html颜色实体符号表示汇总

    颜色的表示方法有许多种,列如black,#000000,rgb(0,0,0)都表示黑色.这三种表示方法分别为英文,十六进制,rgb格式.拥有下列颜色,足以使你的网页充满生机. 颜色名 十六进制颜色值 ...

  4. float 浮动详解

    浮动(float):浮动原先设定时主要是用于文本环绕图像设定的,后来发现其在css布局中有很大的帮助,故渐渐使用浮动. 浮动后的元素脱离了文档的普通流,使得浮动的元素不占据文档的位置,其他元素可以覆盖 ...

  5. Manacher算法:求解最长回文字符串,时间复杂度为O(N)

    原文转载自:http://blog.csdn.net/yzl_rex/article/details/7908259 回文串定义:"回文串"是一个正读和反读都一样的字符串,比如&q ...

  6. 图解HTTP总结(7)——确保Web安全的HTTPS

    HTTP 主要有这些不足, 例举如下.       通信使用明文( 不加密) , 内容可能会被窃听.       不验证通信方的身份, 因此有可能遭遇伪装. 无法证明报文的完整性, 所以有可能已遭篡改 ...

  7. Apache安装之后,在浏览器输入ip无法访问

    博主本来在linux下面配置安装了apache,然后用浏览器输入ip却无法访问 就一直在想是不是dns无法解析的问题,最后才发现原来是防火墙的原因, 在linux下面 service iptables ...

  8. C#简单的文件阅读器

    写一个简单的文件阅读器  1.可以读取大文件(2G)2.实现首页.下一页.前一页.末页的跳转3.实现到指定页面的跳转,比如跳转到第**页4.限制每页显示字符数 1029-4069byte,且用户可自定 ...

  9. 手动完全卸载Office

    1 当然出现安装错误,或是无法安装先考虑官方卸载工具卸载,运行后要是解决了问题是最好的.毕竟手动删除比较麻烦. 开始我们先停止 Office Source Engine 服务.以windows7为例子 ...

  10. HTML5 canvas 圆盘抽奖

    使用html5 canvas 绘制的圆盘抽奖程序 效果图: 贴上全部代码:  1 <!DOCTYPE html> <html> <head> <meta ch ...