【hdu1150】【Machine Schedule】二分图最小点覆盖+简单感性证明
(上不了p站我要死了,侵权度娘背锅)
题目大意
有两台机器A和B以及N个需要运行的任务。每台机器有M种不同的模式,而每个任务都恰好在一台机器上运行。如果它在机器A上运行,则机器A需要设置为模式ai,如果它在机器B上运行,则机器B需要设置为模式bi。每台机器上的任务可以按照任意顺序执行,但是每台机器每转换一次模式需要重启一次。请合理为每个任务安排一台机器并合理安排顺序,使得机器重启次数尽量少。
因为自己二分图太差啦。。。所以要做点水题补基础。
每个任务有两个属性,则可以考虑用二分图来做。发现我们想用最少的模式来完成所有任务,所以就是一个最小点覆盖问题。
感性证明一下 最小点覆盖=最大匹配:
当我们跑出最大匹配后,匹配点首先是将匹配边覆盖了(这是肯定的),同时也将其他边覆盖了。如果有边没有覆盖,则其两个端点都没有被选择,那么这条边就又是一个匹配了(哇)。所以选择比最大匹配更多的点是没有意义的,而如果选择的点比最大匹配少,则有匹配边没有覆盖。
所以 最小点覆盖=最大匹配
AC代码(end不能用?!竟然CE?!)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
template <typename T>inline void read(T &res){
T k=1,x=0;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-')k=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+ch-'0';ch=getchar();}
res=x*k;
}
const int N=105;
int n,m,k;
int head[N],to[1005],nxt[1005],hh=0;
int bl[N];
bool vis[N];
void init(){
memset(bl,0,sizeof(bl));
memset(head,0,sizeof(head));
memset(nxt,0,sizeof(nxt));
memset(to,0,sizeof(to));
hh=0;
}
void adde(int a,int b){
hh++;
to[hh]=b;
nxt[hh]=head[a];
head[a]=hh;
}
bool find(int u){
for(int i=head[u];i;i=nxt[i]){
int v=to[i];
if(vis[v]) continue;
vis[v]=1;
if(bl[v]==0||find(bl[v])){
bl[v]=u;
return true;
}
}
return false;
}
void solve(){
init();
read(m),read(k);
int id,x,y;
for(int i=1;i<=k;i++){
read(id),read(x),read(y);
adde(x,y);
}
int cnt=0;
for(int i=1;i<=n;i++){
memset(vis,0,sizeof(vis));
if(find(i)) cnt++;
}
printf("%d\n",cnt);
}
int main(){
while(1){
read(n);
if(n==0) break;
solve();
}
return 0;
}
【hdu1150】【Machine Schedule】二分图最小点覆盖+简单感性证明的更多相关文章
- UVA1194 Machine Schedule[二分图最小点覆盖]
题意翻译 有两台机器 A,B 分别有 n,m 种模式. 现在有 k 个任务.对于每个任务 i ,给定两个整数$ a_i\(和\) b_i$,表示如果该任务在 A上执行,需要设置模式为 \(a_i\): ...
- [poj1325] Machine Schedule (二分图最小点覆盖)
传送门 Description As we all know, machine scheduling is a very classical problem in computer science a ...
- HDU 1150 Machine Schedule (二分图最小点覆盖)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1150 有两个机器a和b,分别有n个模式和m个模式.下面有k个任务,每个任务需要a的一个模式或者b的一个 ...
- POJ - 1325 Machine Schedule 二分图 最小点覆盖
题目大意:有两个机器,A机器有n种工作模式,B机器有m种工作模式,刚開始两个机器都是0模式.假设要切换模式的话,机器就必须的重新启动 有k个任务,每一个任务都能够交给A机器的i模式或者B机器的j模式完 ...
- HDU1150 Machine Schedule(二分图最大匹配、最小点覆盖)
As we all know, machine scheduling is a very classical problem in computer science and has been stud ...
- POJ 1325 Machine Schedule(最小点覆盖)
http://poj.org/problem?id=1325 题意: 两种机器A和B.机器A具有n种工作模式,称为mode_0,mode_1,...,mode_n-1,同样机器B有m种工作模式mode ...
- 【bzoj4808】【马】二分图最大点独立集+简单感性证明
(上不了p站我要死了,侵权度娘背锅) Description 众所周知,马后炮是中国象棋中很厉害的一招必杀技."马走日字".本来,如果在要去的方向有别的棋子挡住(俗称"蹩 ...
- POJ1325 Machine Schedule(二分图最小点覆盖集)
最小点覆盖集就是在一个有向图中选出最少的点集,使其覆盖所有的边. 二分图最小点覆盖集=二分图最大匹配(二分图最大边独立集) 这题A机器的n种模式作为X部的点,B机器的m种模式作为Y部的点: 每个任务就 ...
- 二分图最小点覆盖构造方案+König定理证明
前言 博主很笨 ,如有纰漏,欢迎在评论区指出讨论. 二分图的最大匹配使用 \(Dinic\) 算法进行实现,时间复杂度为 \(O(n\sqrt{e})\),其中, \(n\)为二分图中左部点的数量, ...
随机推荐
- Canvas 图片平铺设置
/** * 图片平铺 */ function initDemo7(){ var canvas = document.getElementById("demo7"); if (!ca ...
- paramiko类Fabric主机管理
环境:Linux python3.5 要求:类 Fabric 主机管理程序开发:1. 运行程序列出主机组或者主机列表2. 选择指定主机或主机组3. 选择让主机或者主机组执行命令或者向其传输文件(上传/ ...
- C#帮助类
1.集合操作 // <summary> /// 判断一个集合是否包含某个值 /// </summary> /// <typeparam name="T" ...
- 团队项目-第九次scrum 会议
时间:11.5 时长:40分钟 地点:F楼1039教室 工作情况 团队成员 已完成任务 待完成任务 解小锐 完成员工commit函数的数值函数编写 完成多种招聘方式的逻辑编写 陈鑫 实现游戏的暂停功能 ...
- ALPHA(10)
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...
- 【bzoj3669】[Noi2014]魔法森林 Kruskal+LCT
原文地址:http://www.cnblogs.com/GXZlegend/p/6797748.html 题目描述 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看 ...
- [POI2015][bzoj4383] Pustynia [线段树优化建图+拓扑排序]
题面 bzoj权限题传送门 luogu传送门 思路 首先,这个题目显然可以从所有小的点往大的连边,然后如果没环就一定可行,从起点(入读为0)开始构造就好了 但是问题来了,如果每个都连的话,本题中边数是 ...
- 用$("...").attr("checked", true)设置勾选无效的原因
如下图所示,本来想要实现如下图所示的功能,于是我本来是使用$("...").attr("checked", true/false)来实现该功能,但是第一次点击时 ...
- HDU5974 A Simple Math Problem---数论--转化解方程
感谢:http://blog.csdn.net/mirror58229/article/details/63685884 题意:x+y=a lcm(x,y)=b 求x,y 12WCases + b ...
- GitHub上README写法暨markdown语法解读
原文: GitHub上README写法暨markdown语法解读 自从开始玩GitHub以来,就 越来越 感觉它有爱.最近对它的 README.md 文件颇为感兴趣.便写下这贴,帮助更多的还不会编写R ...