题目链接:http://codeforces.com/problemset/problem/914/C

题意:

  对数字x进行一次操作,可以将数字x变为x在二进制下1的个数。

  显然,一个正整数在进行了若干次操作后一定会变成1。

  给定n,k(n用二进制表示给出,n <= 2^1000)。

  问你有多少不超过n的正整数,将它们变为1所需的操作次数恰好为k。

题解:

  由于n <= 2^1000,所以任何不超过n的数在进行了一次操作后,一定不超过1000。

  所以先统计出1000以内所有数变成1所需的操作次数:f[i] = f[cal_bit(i)] + 1

  那么最终答案 = ∑(恰好包含i个1,且不超过n的数字个数),其中f[i] == k-1。

  所以接下来就要求恰好包含i个1,且不超过n的数字个数:

    表示状态:

      dp[i][j][0/1]表示已经填了前i位数,用了j个1,是否与n匹配(0/1),此时的方案数。

      (n的最高位为第1位)

    找出答案:

      恰好包含i个1,且不超过n的数字个数 = dp[n][i][0] + dp[n][i][1]

    如何转移:

      对于dp[i][j][0]:

        dp[i+1][j][0] += dp[i][j][0]

        dp[i+1][j+1][0] += dp[i][j][0]

      对于dp[i][j][1]:

        如果n的第i+1位为1:

          dp[i+1][j][0] += dp[i][j][1]

          dp[i+1][j+1][1] += dp[i][j][1]

        否则:

          dp[i+1][j][1] += dp[i][j][1]

    边界条件:

      dp[1][0][0] = dp[1][1][1] = 1

    最后统计下答案就好。

    其中k==0或1的情况要特判。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 1005
#define MOD 1000000007 using namespace std; int n,k;
int ans=;
int a[MAX_N];
int f[MAX_N];
int dp[MAX_N][MAX_N][];
string s; void read()
{
cin>>s>>k;
n=s.size();
for(int i=;i<n;i++) a[i+]=s[i]-'';
} int cal_bit(int x)
{
int cnt=;
int lowbit=x&-x;
while(lowbit)
{
cnt++;
x^=lowbit;
lowbit=x&-x;
}
return cnt;
} void cal_f()
{
f[]=;
for(int i=;i<=;i++)
{
f[i]=f[cal_bit(i)]+;
}
} void cal_dp()
{
memset(dp,,sizeof(dp));
dp[][][]=dp[][][]=;
for(int i=;i<n;i++)
{
for(int j=;j<=i;j++)
{
if(dp[i][j][])
{
dp[i+][j][]+=dp[i][j][];
dp[i+][j+][]+=dp[i][j][];
dp[i+][j][]%=MOD;
dp[i+][j+][]%=MOD;
}
if(dp[i][j][])
{
if(a[i+])
{
dp[i+][j][]+=dp[i][j][];
dp[i+][j+][]+=dp[i][j][];
dp[i+][j][]%=MOD;
dp[i+][j+][]%=MOD;
}
else
{
dp[i+][j][]+=dp[i][j][];
dp[i+][j][]%=MOD;
}
}
}
}
} void cal_ans()
{
for(int i=;i<=;i++)
{
if(f[i]==k-)
{
ans+=dp[n][i][]+dp[n][i][];
ans%=MOD;
}
}
} void work()
{
if(k==)
{
cout<<<<endl;
return;
}
cal_f();
cal_dp();
cal_ans();
if(k==) cout<<ans-<<endl;
else cout<<ans<<endl;
} int main()
{
read();
work();
}

Codeforces 914C Travelling Salesman and Special Numbers:数位dp的更多相关文章

  1. Codeforces 914C Travelling Salesman and Special Numbers (数位DP)

    题意:题目中定义了一种运算,把数字x变成数字x的二进制位数.问小于n的恰好k次运算可以变成1的数的个数(题目中的n是二进制数,n最大到2^1000) 思路:容易发现,无论多么大的数,只要进行了一次运算 ...

  2. Codeforces 914 C. Travelling Salesman and Special Numbers (数位DP)

    题目链接:Travelling Salesman and Special Numbers 题意: 给出一个二进制数n,每次操作可以将这个数变为其二进制数位上所有1的和(3->2 ; 7-> ...

  3. Codeforces 374 C. Travelling Salesman and Special Numbers (dfs、记忆化搜索)

    题目链接:Travelling Salesman and Special Numbers 题意: 给了一个n×m的图,图里面有'N','I','M','A'四种字符.问图中能构成NIMA这种序列最大个 ...

  4. Travelling Salesman and Special Numbers CodeForces - 914C (数位dp)

    大意: 对于一个数$x$, 每次操作可将$x$变为$x$二进制中1的个数 定义经过k次操作变为1的数为好数, 求$[1,n]$中有多少个好数 注意到n二进制位最大1000位, 经过一次操作后一定变为1 ...

  5. Codeforces 914 C Travelling Salesman and Special Numbers

    Discription The Travelling Salesman spends a lot of time travelling so he tends to get bored. To pas ...

  6. 【Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined) C】 Travelling Salesman and Special Numbers

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 会发现. 进行一次操作过后. 得到的数字肯定是<=1000的 然后1000以下可以暴力做的. 则我们枚举第1步后得到的数字x是 ...

  7. Codeforces Beta Round #51 D. Beautiful numbers 数位dp

    D. Beautiful numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/p ...

  8. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  9. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

随机推荐

  1. lua学习笔记(四)

      表达式   算术操作符     +(加法) -(减法) *(乘法) /(除法) ^(指数) %(取模) -(负号)     x%1的结果是x的小数部分,x-x%1是整数部分   关系操作符     ...

  2. 华为nova3发布,将支持华为AI旅行助手

    ​​​华为nova3于7月18日18:00在深圳大运中心体育馆举行华为nova 3的发布会,从本次华为nova3选择的代言人-易烊千玺,不难看出新机依然延续nova系列的年轻属性,主打 “高颜值 爱自 ...

  3. Visual Studio的 Apache Cordova 插件CTP3.0发布!

    北京时间12号晚23点开始的Connect()活动上,微软发布了一系列激动人心的消息! .NET开源了!以后.NET将可在Linux和Mac OS平台上运行! VS免费了!!如果你是学生,个人开发者, ...

  4. centos7 安装postgresql10

    https://blog.csdn.net/rudy5348/article/details/79299162

  5. Zabbix二次开发_03api列表

    基于zabbix 3.0 https://www.zabbix.com/documentation/3.0/manual/api/reference Method reference This sec ...

  6. local variable 'xxx' referenced before assignment(犯过同样的错)

    这个问题很囧,在外面定义了一个变量 xxx ,然后在Python的一个函数里面引用这个变量,并改变它的值,结果报错local variable 'xxx' referenced before assi ...

  7. proxool连接池 异常

    这是第二次整理这个文章: 首先说明proxool连接池有两种配置方式: 第一种:采用jdbc.properties的方式 第二种:采用proxool.xml的配置方 后面在完善这两种配置方式(在上班哦 ...

  8. node.js实现国标GB28181设备接入的sip服务器解决方案

    方案背景 在介绍GB28181接入服务器的方案前,咱们先大概给大家介绍一下为什么我们选择了用nodejs开发国标GB28181的服务,我大概给很多人介绍过这个方案,大部分都为之虎躯一震,nodejs在 ...

  9. mysql数据库访问授权

    1.进入MySQL服务器 d:\mysql\bin\> mysql -h localhost -u root; 2.赋予任何主机访问数据的权限 mysql> GRANT ALL PRIVI ...

  10. vue介绍和简单使用

    Vue是什么? Vue (读音 /vjuː/,类似于 view) 是一套用于构建用户界面的渐进式框架.与其它大型框架不同的是,Vue 被设计为可以自底向上逐层应用.Vue 的核心库只关注视图层,不仅易 ...