For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

Input

Line 1: Two space-separated integers, N and Q.
Lines 2..
N+1: Line
i+1 contains a single integer that is the height of cow
i

Lines
N+2..
N+
Q+1: Two integers
A and
B (1 ≤
A
B
N), representing the range of cows from
A to
B inclusive.

Output

Lines 1..
Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

Sample Input

6 3
1
7
3
4
2
5
1 5
4 6
2 2

Sample Output

6
3
0 线段树维护最大最小,不涉及更改,只用pushup query就可以了
 #include <iostream>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <algorithm>
#include <sstream>
#include <stack>
using namespace std;
#define FO freopen("in.txt","r",stdin);
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define debug(x) cout << "&&" << x << "&&" << endl;
#define lowbit(x) (x&-x)
#define mem(a,b) memset(a, b, sizeof(a));
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=;
const int inf = 0x3f3f3f3f;
ll powmod(ll a,ll b) {ll res=;a%=mod;for(;b;b>>=){if(b&)res=res*a%mod;a=a*a%mod;}return res;}
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
//head const int maxn=;
int minn[maxn<<],maxx[maxn<<],n,q,a[maxn],maxpos,minpos; void pushup(int rt) {
minn[rt]=min(minn[rt<<],minn[rt<<|]);
maxx[rt]=max(maxx[rt<<],maxx[rt<<|]);
} void build(int rt,int L,int R){
minn[rt]=;
maxx[rt]=;
if(L==R) {
scanf("%d",&a[rt]);
minn[rt]=maxx[rt]=a[rt];
return;
}
int mid=(L+R)>>;
build(rt<<,L,mid);
build(rt<<|,mid+,R);
pushup(rt);
} void query(int rt,int L,int R,int l,int r) {
if(L>=l&&R<=r) {
minpos=min(minpos,minn[rt]);
maxpos=max(maxpos,maxx[rt]);
return;
}
int mid=(L+R)>>;
if(l<=mid) query(rt<<,L,mid,l,r);
if(r>mid) query(rt<<|,mid+,R,l,r);
} int main() {
while(~scanf("%d%d",&n,&q)) {
build(,,n);
int l,r;
while(q--) {
maxpos=-,minpos=inf;
scanf("%d%d",&l,&r);
query(,,n,l,r);
printf("%d\n",l==r?:maxpos-minpos);
}
}
}
												

kuangbin专题七 POJ3264 Balanced Lineup (线段树最大最小)的更多相关文章

  1. POJ3264 Balanced Lineup —— 线段树单点更新 区间最大最小值

    题目链接:https://vjudge.net/problem/POJ-3264 For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000 ...

  2. POJ3264 Balanced Lineup 线段树区间最大值 最小值

    Q个数 问区间最大值-区间最小值 // #pragma comment(linker, "/STACK:1024000000,1024000000") #include <i ...

  3. BZOJ-1699 Balanced Lineup 线段树区间最大差值

    Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 41548 Accepted: 19514 Cas ...

  4. [POJ] 3264 Balanced Lineup [线段树]

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34306   Accepted: 16137 ...

  5. 【POJ】3264 Balanced Lineup ——线段树 区间最值

    Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 34140   Accepted: 16044 ...

  6. bzoj 1636: [Usaco2007 Jan]Balanced Lineup -- 线段树

    1636: [Usaco2007 Jan]Balanced Lineup Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 772  Solved: 560线 ...

  7. poj3264 Balanced Lineup(树状数组)

    题目传送门 Balanced Lineup Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 64655   Accepted: ...

  8. POJ 3264 Balanced Lineup 线段树 第三题

    Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...

  9. poj 3264 Balanced Lineup(线段树、RMQ)

    题目链接: http://poj.org/problem?id=3264 思路分析: 典型的区间统计问题,要求求出某段区间中的极值,可以使用线段树求解. 在线段树结点中存储区间中的最小值与最大值:查询 ...

随机推荐

  1. jsp与struts的区别

    JSP通常用于MVC的View层,Struts1,Struts2用于MVC的Control层. JSP用来展示页面信息,使用servlet API封装而成,代替servlet中response向客户端 ...

  2. leetcode423

    public class Solution { public string OriginalDigits(string s) { ]; ; i < s.Length; i++) { char c ...

  3. does not contain bitcode. You must rebuild it with

    *** does not contain bitcode. You must rebuild it with bitcode enabled (Xcode setting ENABLE_BITCODE ...

  4. [Python Study Notes]csv文件操作

    ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ...

  5. group()、start()、end()、span()

  6. 通过测试确定GCC中 INT DOUBLE的最大/最小值和精度(DOUBLE)

    INT 确定最大/最小值 由于达到极限之后会变符号,直接循环判断条件即可 DOUBLE确定精度 设置一个DOUBLE变量初始值为1/3.0,每次*10,然后取整数部分,当两次的结果相同时说明已经到最大 ...

  7. 解决swfupload改变display属性后flash重新加载的问题(chome,safari内核的所有浏览器)

    最近在做的项目中有要用到上传控件,所有就用到了swfupload flash上传控件 因为在项目中要使用到Tab控件,tab控件通过改变display属性来控制tab页的显 示与隐藏.当swfuplo ...

  8. Boost中实现线程安全

    博客转载自: http://www.cnblogs.com/lvdongjie/p/4447142.html 1 boost原子变量和线程 #include <boost/thread.hpp& ...

  9. 算法Sedgewick第四版-第1章基础-021一双向链表,在遍历时可修改、删除元素

    package algorithms.ADT; /*************************************************************************** ...

  10. Python程序设计6——面向对象

    面向对象有三大特征:多态(对应方法覆写).封装.继承(对应方法重载),这个在Java中已经说得很详细了,这里面只是介绍Python在这三个特性方面的实现. 1 创建自定义类 Python和Java一样 ...