Hadoop官方文档翻译——YARN Architecture(2.7.3)
The fundamental idea of YARN is to split up the functionalities of resource management and job scheduling/monitoring into separate daemons. The idea is to have a global ResourceManager (RM) and per-application ApplicationMaster (AM). An application is either a single job or a DAG of jobs.
The ResourceManager and the NodeManager form the data-computation framework. The ResourceManager is the ultimate authority that arbitrates resources among all the applications in the system. The NodeManager is the per-machine framework agent who is responsible for containers, monitoring their resource usage (cpu, memory, disk, network) and reporting the same to the ResourceManager/Scheduler.
The per-application ApplicationMaster is, in effect, a framework specific library and is tasked with negotiating resources from the ResourceManager and working with the NodeManager(s) to execute and monitor the tasks.
YARN的基本构想是将资源管理器和作业调度器/监控器分开成两个单独的进程。这个想法是为了拥有一个全局的资源管理器(RM)和每一个应用都有一个应用控制器。应用可以是一个单独的作业也可以是一组作业。
ResourceManager和NodeManager构成数据计算框架。RM是最终的权威仲裁系统中的所有应用的资源分配。NodeManager是框架在每台机器中负责containers的代理,监控它们的资源使用(内存、CPU、磁盘和网络)和将其汇报给ResourceManager/调度器。监控它们的资源使用(内存、CPU、磁盘和网络)和将其汇报给ResourceManager/调度器。
每个应用程序的ApplicationMaster实际上是框架指定的库负责从RM谈判获取资源并和MM一起工作来执行和监控任务。
The ResourceManager has two main components: Scheduler and ApplicationsManager.
The Scheduler is responsible for allocating resources to the various running applications subject to familiar constraints of capacities, queues etc. The Scheduler is pure scheduler in the sense that it performs no monitoring or tracking of status for the application. Also, it offers no guarantees about restarting failed tasks either due to application failure or hardware failures. The Scheduler performs its scheduling function based the resource requirements of the applications; it does so based on the abstract notion of a resource Container which incorporates elements such as memory, cpu, disk, network etc.
The Scheduler has a pluggable policy which is responsible for partitioning the cluster resources among the various queues, applications etc. The current schedulers such as the CapacityScheduler and the FairScheduler would be some examples of plug-ins.
The ApplicationsManager is responsible for accepting job-submissions, negotiating the first container for executing the application specific ApplicationMaster and provides the service for restarting the ApplicationMaster container on failure. The per-application ApplicationMaster has the responsibility of negotiating appropriate resource containers from the Scheduler, tracking their status and monitoring for progress.
MapReduce in hadoop-2.x maintains API compatibility with previous stable release (hadoop-1.x). This means that all MapReduce jobs should still run unchanged on top of YARN with just a recompile.
ResourceManager有两个主要的组成部分:调度器和应用管理器。
调度器负责给各个正在运行的拥有相似的约束如容量,队列等的应用分配资源。调度器是一个纯粹的调度器而不负责监控或者跟踪应用的状态。他也不负责恢复由于应用失效或者硬件失效而失败的任务。调度器根据应用的资源需求来执行它的调度。而不是根据一个抽象资源“容器”包含的元素例如内存、CPU、磁盘和网络等
调度器是一个可插拔的组件负责将资源分配给各种各样的队列、应用等。目前的容量调度器和公平调度器将成为一些插件的例子。
应用管理器负责接收作业的提交、选择第一个容器用来运行应用指定的应用控制器和提供当ApplicationMaster容器失效时的重启。每个应用的ApplicationMaster负责从调度器那里谈判获取合适的资源容器,跟踪他们的状态和监控过程。
hadoop-2.x中的MapReduce兼容前面稳定的版本(hadoop-1.x)。这就意味着所有的MapReduce作业只需要再编译一次无需做任何改变就可以运行在YARN上。
*由于译者本身能力有限,所以译文中肯定会出现表述不正确的地方,请大家多多包涵,也希望大家能够指出文中翻译得不对或者不准确的地方,共同探讨进步,谢谢。
Hadoop官方文档翻译——YARN Architecture(2.7.3)的更多相关文章
- Hadoop官方文档翻译—— YARN ResourceManager High Availability 2.7.3
ResourceManager High Availability (RM高可用) Introduction(简介) Architecture(架构) RM Failover(RM 故障切换) Rec ...
- Hadoop官方文档翻译——HDFS Architecture 2.7.3
HDFS Architecture HDFS Architecture(HDFS 架构) Introduction(简介) Assumptions and Goals(假设和目标) Hardware ...
- 【转载】Hadoop官方文档翻译——HDFS Architecture 2.7.3
HDFS Architecture HDFS Architecture(HDFS 架构) Introduction(简介) Assumptions and Goals(假设和目标) Hardware ...
- Hadoop官方文档翻译——MapReduce Tutorial
MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...
- Spark官方文档翻译(一)~Overview
Spark官方文档翻译,有问题请及时指正,谢谢. Overview页 http://spark.apache.org/docs/latest/index.html Spark概述 Apache Spa ...
- Flume官方文档翻译——Flume 1.7.0 User Guide (unreleased version)(二)
Flume官方文档翻译--Flume 1.7.0 User Guide (unreleased version)(一) Logging raw data(记录原始数据) Logging the raw ...
- Hadoop学习之YARN框架
转自:http://www.ibm.com/developerworks/cn/opensource/os-cn-hadoop-yarn/,非常感谢分享! 对于业界的大数据存储及分布式处理系统来说,H ...
- Hadoop学习笔记—Yarn
目录 一些基本知识 ResourceManager 的恢复 Resource Manager的HA YARN Node Labels YARN Node Attributes Web Applicat ...
- Flume官方文档翻译——Flume 1.7.0 User Guide (unreleased version)中一些知识点
Flume官方文档翻译--Flume 1.7.0 User Guide (unreleased version)(一) Flume官方文档翻译--Flume 1.7.0 User Guide (unr ...
随机推荐
- HTML5 简易转盘
这里我们使用两个Canvas进行转盘的绘画 canvas1用于绘画背景,Canvas2用于指针的转动: 把Canvas2背景设为透明并使用相对布局定位: #myCanvas2{ position: a ...
- 使用Spring注解来简化ssh框架的代码编写
目的:主要是通过使用Spring注解的方式来简化ssh框架的代码编写. 首先:我们浏览一下原始的applicationContext.xml文件中的部分配置. <bean id="m ...
- libmegjb.so加载问题调试和分析
欢迎转载opendevkit文章, 文章原始地址: http://www.opendevkit.com/?e=70 01-01 00:09:21.084: D/dalvikvm(10394): Try ...
- iOS 项目改名~~~~~
今早出现一个改名的囧事...先记录下...在此之前感谢整理过这片文章的作者 --- GarveyCalvin ,插眼!以下是正文---- 前言:在iOS开发中,有时候想改一下项目的名字,都会遇到很多麻 ...
- Hibernate自动创建表
只要在hibernate.cfg.xml添加这句话,就可以自动生成数据表 <property name="hibernate.hbm2ddl.auto">update& ...
- Icident event 分析
现象 备库中断,显示如下错误 Connect_Retry: 60 Master_Log_File: mysql-bin.000185 Read_Master_Log_Pos: 308647804 Re ...
- Lucene 查询工具 LQT
Lucene Query Tool (lqt) 是一个命令行工具用来执行 Lucene 查询并对结果进行格式化输出. 使用方法: 01 $ ./lqt 02 usage: LuceneQueryToo ...
- 从为什么String=String谈到StringBuilder和StringBuffer
前言 有这么一段代码: public class TestMain { public static void main(String[] args) { String str0 = "123 ...
- C++中new和delete的背后
关于 C++中new背后的行为, 以前已经写过一篇了 理解C++中new背后的行为, 但是里面也只是泛泛而谈,没有真凭实据, 下面我们从汇编的角度看C++编译器究竟在背后干了什么? 我们的代码很简单, ...
- [ACM_几何] Pipe
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=28417#problem/B 本题大意: 给定一个管道上边界的拐点,管道宽为1,求 ...