三、MapReduce运行原理

1、Map过程简述:

1)读取数据文件内容,对每一行内容解析成<k1,v1>键值对,每个键值对调用一次map函数

2)编写映射函数处理逻辑,将输入的<k1,v1>转换成新的<k2,v2>

3)对输出的<k2,v2>按reducer个数和分区规则进行分区

4)不同的分区,按k2进行排序、分组,将相同的k2的value放到同一个集合中

5)(可选)将分组后的数据重新reduce归约

2、reduce处理过程:

1)对多个Map的输出,按不同分区通过网络将copy到不同的reduce节点

2)对多个map的输出进行排序,合并,编写reduce函数处理逻辑,将接收到的数据转化成<k3,v3>

3)将reduce节点输出的数据保存到HDFS上

说明:

1)Mapper Task 是逻辑切分。因为Maper记录的都是block的偏移量,是逻辑切分,但相对于内存中他确实是物理切分,因为每个Mapper都是记录的分片段之后的数据。

2)shuffle是物理切分。MapReduce的过程是俩过程需要用到Shuffle的,1个mapper的Shufflle,1个多个reduce的Shuffle,一般每个计算模型都要多次的reduce,所以要用到多次的Shuffle。.

MapReduce原理图

正常HDFS存储3份文件,Jar包默认写10份,NameNode通过心跳机制领取HDFS任务,运行完毕后JAR包会被删除。

Map端处理流程分析:

   1) 每个输入分片会交给一个Map任务(是TaskTracker节点上运行的一个Java进程),默认情况下,系统会以HDFS的一个块大小作为一个分片(hadoop2默认128M,配置dfs.blocksize)。Map任务通过InputFormat将输入分片处理成可供Map处理的<k1,v1>键值对。

   2) 通过自己的Map处理方法将<k1,v1>处理成<k2,v2>,输出结果会暂时放在一个环形内存缓冲(缓冲区默认大小100M,由mapreduce.task.io.sort.mb属性控制)中,当缓冲区快要溢出时(默认为缓冲区大小的80%,由mapreduce.map.sort.spill.percent属性控制),会在本地操作系统文件系统中创建一个溢出文件(由mapreduce.cluster.local.dir属性控制,默认${hadoop.tmp.dir}/mapred/local),保存缓冲区的数据。溢写默认控制为内存缓冲区的80%,是为了保证在溢写线程把缓冲区那80%的数据写到磁盘中的同时,Map任务还可以继续将结果输出到缓冲区剩余的20%内存中,从而提高任务执行效率。

   3) 每次spill将内存数据溢写到磁盘时,线程会根据Reduce任务的数目以及一定的分区规则将数据进行分区,然后分区内再进行排序、分组,如果设置了Combiner,会执行规约操作。

   4) 当map任务结束后,可能会存在多个溢写文件,这时候需要将他们合并,合并操作在每个分区内进行,先排序再分组,如果设置了Combiner并且spill文件大于mapreduce.map.combine.minspills值(默认值3)时,会触发Combine操作。每次分组会形成新的键值对<k2,{v2...}>。

   5) 合并操作完成后,会形成map端的输出文件,等待reduce来拷贝。如果设置了压缩,则会将输出文件进行压缩,减少网络流量。是否进行压缩,mapreduce.output.fileoutputformat.compress,默认为false。设置压缩库,mapreduce.output.fileoutputformat.compress.codec,默认值org.apache.hadoop.io.compress.DefaultCodec。

   Reduce端处理流程分析:

   1) Reduce端会从AM那里获取已经执行完的map任务,然后以http的方法将map输出的对应数据拷贝至本地(拷贝最大线程数mapreduce.reduce.shuffle.parallelcopies,默认值5)。每次拷贝过来的数据都存于内存缓冲区中,当数据量大于缓冲区大小(由mapreduce.reduce.shuffle.input.buffer.percent控制,默认0.7)的一定比例(由mapreduce.reduce.shuffle.merge.percent控制,默认0.66)时,则将缓冲区的数据溢写到一个本地磁盘中。由于数据来自多个map的同一个分区,溢写时不需要再分区,但要进行排序和分组,如果设置了Combiner,还会执行Combine操作。溢写过程与map端溢写类似,输出写入可同时进行。

   2) 当所有的map端输出该分区数据都已经拷贝完毕时,本地磁盘可能存在多个spill文件,需要将他们再次排序、分组合并,最后形成一个最终文件,作为Reduce任务的输入。此时标志Shuffle阶段结束,然后Reduce任务启动,将最终文件中的数据处理形成新的键值对<k3,v3>。

   3) 将生成的数据<k3,v3>输出到HDFS文件中。

Map与Reduce执行过程图

MR原理的更多相关文章

  1. mr原理简单分析

    背景 又是一个周末一天一天的过的好快,今天的任务干啥呢,索引总结一些mr吧,因为前两天有面试问过我?我当时也是简单说了一下,毕竟现在写mr程序的应该很少很少了,废话不说了,结合官网和自己理解写起. 官 ...

  2. MR 原理

    MapReduce的执行步骤: 1.Map任务处理 1.1 读取HDFS中的文件.每一行解析成一个<k,v>.每一个键值对调用一次map函数.                <0,h ...

  3. [Hadoop]浅谈MapReduce原理及执行流程

    MapReduce MapReduce原理非常重要,hive与spark都是基于MR原理 MapReduce采用多进程,方便对每个任务资源控制和调配,但是进程消耗更多的启动时间,因此MR时效性不高.适 ...

  4. HadoopMR-Spark-HBase-Hive

     YARN资源调度: 三种 FIFO 大任务独占 一堆小任务独占 capacity 弹性分配 :计算任务较少时候可以利用全部的计算资源,当队列的任务多的时候会按照比例进行资源平衡. 容量保证:保证队 ...

  5. 2_分布式计算框架MapReduce

    一.mr介绍 1.MapReduce设计理念是移动计算而不是移动数据,就是把分析计算的程序,分别拷贝一份到不同的机器上,而不是移动数据. 2.计算框架有很多,不是谁替换谁的问题,是谁更适合的问题.mr ...

  6. Hadoop基本知识,(以及MR编程原理)

     hadoop核心是:MapReduce和HDFS (对应着job执行(程序)和文件存储系统(数据的输入和输出)) CRC32作数据交验:在文件Block写入的时候除了写入数据还会写入交验信息,在读取 ...

  7. Hive mapreduce SQL实现原理——SQL最终分解为MR任务,而group by在MR里和单词统计MR没有区别了

    转自:http://blog.csdn.net/sn_zzy/article/details/43446027 SQL转化为MapReduce的过程 了解了MapReduce实现SQL基本操作之后,我 ...

  8. 【Hadoop】YARN 原理、MR本地&YARN运行模式

    1.基本概念 2.YARN.MR交互流程 3.源码解读

  9. 【系统篇】从int 3探索Windows应用程序调试原理

    探索调试器下断点的原理 在Windows上做开发的程序猿们都知道,x86架构处理器有一条特殊的指令——int 3,也就是机器码0xCC,用于调试所用,当程序执行到int 3的时候会中断到调试器,如果程 ...

随机推荐

  1. Linux的phpstudy mysql登录

    使用绝对路径登录 /phpStudy/mysql/bin/mysql -uroot -p; 设置远程登录密码 GRANT ALL PRIVILEGES ON *.* TO 'itoffice'@'%' ...

  2. How to copy remote computer files quickly to local computer

    if we want copy file from VM(Remote VM) to local computer. Always can not easy copy file so easy. no ...

  3. 斗地主——扎金花——3DMark

    public class Card {//扑克类 private String face; private String suit; // 牌面值和花色初始化 public Card(String f ...

  4. win使用MSYS2安装Qt开发环境

    原文链接 MSYS2 下载地址: pacman的具体用法 有pacman的具体使用方法.我们首先对系统升级 我们首先对系统升级 pacman -Syu 就会检测整个系统可以升级的组件,并自动下载安装, ...

  5. pt_table_checksum对检查表的chunk大小的限制

    02-16T10:22:38 Skipping table xoxdb.tb_valuelog because on the master it would be checksummed in one ...

  6. 位图图像处理控件ImageCapture Suite更新至v9.1

    概述:Dynamsoft公司旗下非常出名的位图图像处理控件ImageCapture Suite更新至了v9.1,这次新版本为Mac版本和IE 9新增了不少功能,同时还对其他组件的性能进行了质的提高! ...

  7. JavaSE自学笔记

    ch03 [Thu Aug 18 2016 11:22:26 GMT+0800] 对象变量与对象之间是指代关系,对象变量并不能完全说明有无对象可用.这种指代关系是通过赋值运算建立起来的.对象变量保存的 ...

  8. iOS后台定位时授权提示一闪而过的解决办法

    今天做后台定位时,授权提示"允许 XXX 在您并未使用该应用时范文您的位置吗?"总是一闪而过,点不到,或者压根就不弹出.后来找到了解决问题的方法,那就是:将CLLocationMa ...

  9. 编译器错误信息: CS0433: 类型“ASP.usercontrols_total_ascx”同时存在

    “/”应用程序中的服务器错误. 编译错误 说明: 在编译向该请求提供服务所需资源的过程中出现错误.请检查下列特定错误详细信息并适当地修改源代码. 编译器错误信息: CS0433: 类型“ASP.use ...

  10. C#中的IEnumable与IEnumator接口的简单理解

    IEnumerable接口中的方法是返回IEnumator的对象,集合继承了IEnumerator接口才能实现Foreach方法实现遍历.集合类都继承IEnumable和IEnumerator接口,或 ...