(zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers
A list of recent papers regarding deep reinforcement learning.
The papers are organized based on manually-defined bookmarks.
They are sorted by time to see the recent papers first.
Any suggestions and pull requests are welcome.
Bookmarks
- All Papers
- Value
- Policy
- Discrete Control
- Continuous Control
- Text Domain
- Visual Domain
- Robotics
- Games
- Monte-Carlo Tree Search
- Inverse Reinforcement Learning
- Improving Exploration
- Multi-Task and Transfer Learning
- Multi-Agent
- Hierarchical Learning
All Papers
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Maximum Entropy Deep Inverse Reinforcement Learning, M. Wulfmeier et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Value
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Policy
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
Discrete Control
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- Learning Simple Algorithms from Examples, W. Zaremba et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Recurrent Reinforcement Learning: A Hybrid Approach, X. Li et al., arXiv, 2015.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Continuous Control
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
- Deterministic Policy Gradient Algorithms, D. Silver et al., ICML, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
Text Domain
- Strategic Dialogue Management via Deep Reinforcement Learning, H. Cuayáhuitl et al., NIPS Workshop, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Generating Text with Deep Reinforcement Learning, H. Guo, arXiv, 2015.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences, H. Mei et al., arXiv, 2015.
Visual Domain
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Value Iteration Networks, A. Tamar et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Robotics
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Benchmarking Deep Reinforcement Learning for Continuous Control, Y. Duan et al., ICML, 2016.
- Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection, S. Levine et al., arXiv, 2016.
- Continuous Deep Q-Learning with Model-based Acceleration, S. Gu et al., ICML, 2016.
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Memory-based control with recurrent neural networks, N. Heess et al., NIPS Workshop, 2015.
- Towards Vision-Based Deep Reinforcement Learning for Robotic Motion Control, F. Zhang et al., arXiv, 2015.
- Learning Continuous Control Policies by Stochastic Value Gradients, N. Heess et al., NIPS, 2015.
- Learning Deep Neural Network Policies with Continuous Memory States, M. Zhang et al., arXiv, 2015.
- High-Dimensional Continuous Control Using Generalized Advantage Estimation, J. Schulman et al., ICLR, 2016.
- End-to-End Training of Deep Visuomotor Policies, S. Levine et al., arXiv, 2015.
- DeepMPC: Learning Deep Latent Features for Model Predictive Control, I. Lenz, et al., RSS, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
Games
- Model-Free Episodic Control, C. Blundell et al., arXiv, 2016.
- Safe and Efficient Off-Policy Reinforcement Learning, R. Munos et al., arXiv, 2016.
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Control of Memory, Active Perception, and Action in Minecraft, J. Oh et al., ICML, 2016.
- Dynamic Frame skip Deep Q Network, A. S. Lakshminarayanan et al., IJCAI Deep RL Workshop, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Asynchronous Methods for Deep Reinforcement Learning, V. Mnih et al., arXiv, 2016.
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Increasing the Action Gap: New Operators for Reinforcement Learning, M. G. Bellemare et al., AAAI, 2016.
- How to Discount Deep Reinforcement Learning: Towards New Dynamic Strategies, V. François-Lavet et al., NIPS Workshop, 2015.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
- MazeBase: A Sandbox for Learning from Games, S. Sukhbaatar et al., arXiv, 2016.
- Dueling Network Architectures for Deep Reinforcement Learning, Z. Wang et al., arXiv, 2015.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- Prioritized Experience Replay, T. Schaul et al., ICLR, 2016.
- Deep Reinforcement Learning with an Action Space Defined by Natural Language, J. He et al., arXiv, 2015.
- Deep Reinforcement Learning in Parameterized Action Space, M. Hausknecht et al., ICLR, 2016.
- Variational Information Maximisation for Intrinsically Motivated Reinforcement Learning, S. Mohamed and D. J. Rezende, arXiv, 2015.
- Deep Reinforcement Learning with Double Q-learning, H. van Hasselt et al., arXiv, 2015.
- Continuous control with deep reinforcement learning, T. P. Lillicrap et al., ICLR, 2016.
- Language Understanding for Text-based Games Using Deep Reinforcement Learning, K. Narasimhan et al., EMNLP, 2015.
- Giraffe: Using Deep Reinforcement Learning to Play Chess, M. Lai, arXiv, 2015.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Deep Recurrent Q-Learning for Partially Observable MDPs, M. Hausknecht and P. Stone, arXiv, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
- Massively Parallel Methods for Deep Reinforcement Learning, A. Nair et al., ICML Workshop, 2015.
- Trust Region Policy Optimization, J. Schulman et al., ICML, 2015.
- Human-level control through deep reinforcement learning, V. Mnih et al., Nature, 2015.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
- Playing Atari with Deep Reinforcement Learning, V. Mnih et al., NIPS Workshop, 2013.
Monte-Carlo Tree Search
- Mastering the game of Go with deep neural networks and tree search, D. Silver et al., Nature, 2016.
- Better Computer Go Player with Neural Network and Long-term Prediction, Y. Tian et al., ICLR, 2016.
- Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Search Planning, X. Guo et al., NIPS, 2014.
Inverse Reinforcement Learning
- Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization, C. Finn et al., arXiv, 2016.
- Maximum Entropy Deep Inverse Reinforcement Learning, M. Wulfmeier et al., arXiv, 2015.
Multi-Task and Transfer Learning
- Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning, E. Parisotto, et al., ICLR, 2016.
- Policy Distillation, A. A. Rusu et at., ICLR, 2016.
- ADAAPT: A Deep Architecture for Adaptive Policy Transfer from Multiple Sources, J. Rajendran et al., arXiv, 2015.
- Universal Value Function Approximators, T. Schaul et al., ICML, 2015.
Improving Exploration
- Unifying Count-Based Exploration and Intrinsic Motivation, M. G. Bellemare et al., arXiv, 2016.
- Curiosity-driven Exploration in Deep Reinforcement Learning via Bayesian Neural Networks, R. Houthooft et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
- Deep Exploration via Bootstrapped DQN, I. Osband et al., arXiv, 2016.
- Action-Conditional Video Prediction using Deep Networks in Atari Games, J. Oh et al., NIPS, 2015.
- Incentivizing Exploration In Reinforcement Learning With Deep Predictive Models, B. C. Stadie et al., arXiv, 2015.
Multi-Agent
- Learning to Communicate to Solve Riddles with Deep Distributed Recurrent Q-Networks, J. N. Foerster et al., arXiv, 2016.
- Multiagent Cooperation and Competition with Deep Reinforcement Learning, A. Tampuu et al., arXiv, 2015.
Hierarchical Learning
- Deep Successor Reinforcement Learning, T. D. Kulkarni et al., arXiv, 2016.
- Hierarchical Reinforcement Learning using Spatio-Temporal Abstractions and Deep Neural Networks, R. Krishnamurthy et al., arXiv, 2016.
- Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation, T. D. Kulkarni et al., arXiv, 2016.
(zhuan) Deep Reinforcement Learning Papers的更多相关文章
- (转) Deep Reinforcement Learning: Playing a Racing Game
Byte Tank Posts Archive Deep Reinforcement Learning: Playing a Racing Game OCT 6TH, 2016 Agent playi ...
- (转) Deep Reinforcement Learning: Pong from Pixels
Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- 【资料总结】| Deep Reinforcement Learning 深度强化学习
在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...
- Deep Reinforcement Learning
Reinforcement-Learning-Introduction-Adaptive-Computation http://incompleteideas.net/book/bookdraft20 ...
- Deep Reinforcement Learning with Iterative Shift for Visual Tracking
Deep Reinforcement Learning with Iterative Shift for Visual Tracking 2019-07-30 14:55:31 Paper: http ...
- 深度强化学习(Deep Reinforcement Learning)入门:RL base & DQN-DDPG-A3C introduction
转自https://zhuanlan.zhihu.com/p/25239682 过去的一段时间在深度强化学习领域投入了不少精力,工作中也在应用DRL解决业务问题.子曰:温故而知新,在进一步深入研究和应 ...
- (转) Playing FPS games with deep reinforcement learning
Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...
- Learning Roadmap of Deep Reinforcement Learning
1. 知乎上关于DQN入门的系列文章 1.1 DQN 从入门到放弃 DQN 从入门到放弃1 DQN与增强学习 DQN 从入门到放弃2 增强学习与MDP DQN 从入门到放弃3 价值函数与Bellman ...
随机推荐
- Java之使用NetworkInterface类获得网络接口信息
转:http://www.xuebuyuan.com/1037327.html
- VS.net中快捷键收缩和展开代码段 (转)
i. Ctrl-M-O 折叠所有方法 ii. Ctrl-M-P 展开所有方法并停止大纲显示(不可以再折叠了) iii. Ctrl-M-M 折叠或展开当前方法 iv. Ctrl-M-L展开所 ...
- Java优化
Java初级优化 1. 对于明确不需要派生的类,添加final修饰符,此时该类的所有方法都是final的.Java编译器会寻找机会内联(inline)所有的final方法.(能使性能提升50%)2. ...
- 深入理解JavaScript系列:为什么03-0.2不等于0.1
五一宅家看书,所以接着更新一篇文章. 今天讲一下为什么03-0.2不等于0.1这个问题. 有点标题党的味道,在JavaScript中,当你试着对小数进行加减运算时,有时候会发现某个结果并非我们所想的那 ...
- linux工作用到的
SSH 为 Secure Shell 的缩写,由 IETF 的网络工作小组(Network Working Group)所制定:SSH 为建立在应用层和传输层基础上的安全协议. SSH 是目前较可靠, ...
- Android RadioButton 语言无法切换问题
1.Dialog在不退出界面的情况下,RadioButton在语言切换时,无法匹配系统语言的问题: 解决办法为:在RadioButton添加属性 android:saveEnabled="f ...
- android 生成.keystore文件
cmd 进入jdk下的bin目录(我的目录:C:\Program Files\Java\jdk1.6.0_37\bin) keytool -genkey -alias xxx.keystore -ke ...
- 关于IIS服务器证书续订
输入办证机构+服务器名或IP 办证机构可以通过certsrv.msc来查看 输入完后点完成
- Sqoop使用手册
转载请注明出处:http://www.cnblogs.com/xiaodf/ 1 Sqoop概述 2 版本说明 3 驱动安装 3.1 MySQL 4 基本用法 4.1 导入 4.1.1 保护密码 4. ...
- java虚拟机之垃圾收集器
serial收集器: 最基本的,是一个单线程收集器,只会使用一个CPU或者一条收集线程去完成垃圾收集, 更重要的是 在进行垃圾收集时,其他任务线程必须停止,serial收集器任然是client模式下的 ...