Diophantus of Alexandria

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 2269    Accepted Submission(s): 851

Problem Description
Diophantus
of Alexandria was an egypt mathematician living in Alexandria. He was
one of the first mathematicians to study equations where variables were
restricted to integral values. In honor of him, these equations are
commonly called diophantine equations. One of the most famous
diophantine equation is x^n + y^n = z^n. Fermat suggested that for n
> 2, there are no solutions with positive integral values for x, y
and z. A proof of this theorem (called Fermat's last theorem) was found
only recently by Andrew Wiles.

Consider the following diophantine equation:

1 / x + 1 / y = 1 / n where x, y, n ∈ N+ (1)

Diophantus
is interested in the following question: for a given n, how many
distinct solutions (i. e., solutions satisfying x ≤ y) does equation (1)
have? For example, for n = 4, there are exactly three distinct
solutions:

1 / 5 + 1 / 20 = 1 / 4
1 / 6 + 1 / 12 = 1 / 4
1 / 8 + 1 / 8 = 1 / 4

Clearly,
enumerating these solutions can become tedious for bigger values of n.
Can you help Diophantus compute the number of distinct solutions for big
values of n quickly?

 
Input
The
first line contains the number of scenarios. Each scenario consists of
one line containing a single number n (1 ≤ n ≤ 10^9).
 
Output
The
output for every scenario begins with a line containing "Scenario #i:",
where i is the number of the scenario starting at 1. Next, print a
single line with the number of distinct solutions of equation (1) for
the given value of n. Terminate each scenario with a blank line.
 
Sample Input
2
4
1260
 
Sample Output
Scenario #1:
3

 
Scenario #2:
113
 
 
Source
 
Recommend
JGShining   |   We have carefully selected several similar problems for you:  1788 1905 3049 1576 1402
 
这题数论求的是 数的因子个数,设数为n,其可表示为
n=p1^r1 * p2^r2 * . . . * pn^rn
其中,p为素数,且可知其n的因子个数
k=(r1+1)*(r2+2)*...*(rn+1);
 
又由题可得,
1/x+y/1=1/n  ==> 
x>n && y>n   ==> 
xy=nx+ny,设y=n+k,x=n*(n+k)/k,即所求为n*n的因子个数
k=(2*r1+1)*(2*r2+2)*...*(2*rn+1);
 
注意结果要求多少对,故ans=k/2+1;
 //140MS    200K    622 B    G++
#include<stdio.h>
#include<math.h>
long long solve(int n)
{
long long ans=;
int i;
int m=(int)sqrt(n+0.5);
for(i=;i<=m;i++){
int ret=;
if(n%i==){
n/=i;
while(n%i==){
n/=i;ret++;
}
ans*=(*ret+);
}
if(n<i) break;
}
if(n>) ans*=;
return ans;
}
int main(void)
{
int n;
int cas=,t;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
printf("Scenario #%d:\n%lld\n",cas++,solve(n)/+);
printf("\n");
}
return ;
}
 

hdu 1299 Diophantus of Alexandria (数论)的更多相关文章

  1. hdu 1299 Diophantus of Alexandria(数学题)

    题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...

  2. hdu 1299 Diophantus of Alexandria

    1/x + 1/y = 1/n 1<=n<=10^9给你 n 求符合要求的x,y有多少对 x<=y// 首先 x>n 那么设 x=n+m 那么 1/y= 1/n - 1/(n+ ...

  3. hdoj 1299 Diophantus of Alexandria

    hdoj 1299 Diophantus of Alexandria 链接:http://acm.hdu.edu.cn/showproblem.php?pid=1299 题意:求 1/x + 1/y ...

  4. 数学--数论--HDU 1299 +POJ 2917 Diophantus of Alexandria (因子个数函数+公式推导)

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

  5. HDU 1299 基础数论 分解

    给一个数n问有多少种x,y的组合使$\frac{1}{x}+\frac{1}{y}=\frac{1}{n},x<=y$满足,设y = k + n,代入得到$x = \frac{n^2}{k} + ...

  6. hdu Diophantus of Alexandria(素数的筛选+分解)

    Description Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of ...

  7. Hdu 1299

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java ...

  8. Diophantus of Alexandria[HDU1299]

    Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Ot ...

  9. Diophantus of Alexandria

    Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of the first ma ...

随机推荐

  1. 关于Lucene.net 中高亮显示关键词的深究

    这几天一直在学习lucene,也写了3篇自己总结的知识点,本以为很容易上手的东西,但是却遇到了一个很棘手的问题,借此,希望可以跟大家探讨一下 问题:使用盘古高亮显示组件后,如搜索“mp3 player ...

  2. sencha touch+phonegap+node.js打包

    这讲我们来讲解下如何使用phonegapa创建项目环境并通过她们将sencha touch打包成app,这里我们只讲解打包android的apk,打包ios的过程有点类似,但是需要在mac环境下,最后 ...

  3. Android自学笔记:Git下载源代码

    Info:做J2ME几年了,现在基本没有公司用了,是时候向Android领域进军了. 自学中,难免会有疏漏,有问题请及时提出,共同学习共同进步. 2014-10-13:初版 2014-10-14:添加 ...

  4. 通过Nginx+tomcat+redis实现反向代理 、负载均衡及session同步

    一直对于负载均衡比较陌生,今天尝试着去了解了一下,并做了一个小的实验,对于这个概念有一些认识,在此做一个简单的总结 什么是负载均衡 负载均衡,英文 名称为Load Balance,指由多台服务器以对称 ...

  5. C++学习基础十一——子类对象向父类对象的转化

    一.C++中可以实现子类向父类的转换,主要分为三种形式: 1.对象转换:不能实现动态绑定,即不能实现多态. 2.引用转换:动态绑定,实现多态. 3.指针转换:动态绑定,实现多态. 注意:一般不会出现父 ...

  6. jquery中的ajax参数

    jquery中将ajax封装成了函数,我们使用起来非常方便,jquery会自动根据内容选择post还是get方式提交数据,并且会自动编码,但是要想完全掌握jquery中的ajax,我们必须将它的各个参 ...

  7. What is Agile

    Agile is a set of Values, Principles and Practices, that will change your behavior to will create gr ...

  8. JCL笔记

    本文转自<http://leowzy.iteye.com/blog/888931> ---------------------------------------------------- ...

  9. begin-end语句块在mysql中的使用问题

    在最近在通过navicate连接mysql数据库时,进行查询操作: delimiter $$BEGIN SET @a=1; if (@a > 0) THEN SELECT COUNT(*) fr ...

  10. jmc远程监控java服务

    简介 JMC(Java mission control)是JDK自带的一个图形界面监控工具,监控信息非常全面.他的安装目录在%JAVA_HOME%\bin\jmc.exe 最近JSTORM程序在集群环 ...