understanding-论文
understanding temporal and spatial travel paterns of individual passengers by mining smart card data
Question1:what is the temporal acess pattern?
Question2:what is the spatio access pattern?
Question3:is there any relationship between the temporal and spatio pattern?
Question4:is this passenger's paterns normal or special?
(如何能既能表现temporal和spatio,刷卡人的每次出行,时间和空间不能分家,仅时间不可以,仅空间也不可以,因此如何把他们俩个同时表示出来才可以)
benifit:
- policy evaluation
- anomaly detection(beggar:specail passengers)
- social networking(a scalable processing:connecting the passengers with similar public transportation patterns)
contribution:
- a systematic approach :extract temporal and spatial features,uses spatio-temporal analyse to perform abnoramal detection.
- an in-depth analysis and explanations for different groups
Morency 的三篇论文与其相似,已下载
Dataset: a month,21 weekdays,metro or bus transactions
Data preprocessing:
- find all trips belongs to one passenger
- filter out the passengers that rarely take metro.make a picture to show the distribution of the number of passengers according to the number of active days:有80%的人活动工作日天数少于7,20%的最活跃的人占有68% 的交易。研究那些很少出行的人没有意义,因此将工作日天数少于6的人去掉
Temporal features extraction: n维数据来描述时间属性
- n值不能太大也不能太小
- the central idea of temporal feature extraction is to divide time into sequential and overlapped slots.
- 选择这个的原因,第一:non-overlapped slots即不重叠的时间序列很难表示一些trips;第二:很少有trips超过三个小时,因此把时间长度定位3小时,8:00-10:59;9:00-11:59等
- 三步骤提取时空属性
Spatial features extract:
- OD矩阵,按OD对的频率下降排列,将空间属性的值设为4
anomaly features extract:
- 用时多于相同的OD用时 概率W ;起始点与终点相同 概率P ;
- 需要找出这两种异常经常发生的人
Temporal analysis:
- Clustering:k-means 将按时间属性将乘客分成四类:
- TGrp1:one dominant travel slot
- TGrp2:two dominant travel slot
- TGrp3:one relatively high dominant travel slot and one general travel slot
- TGrp4:no significant diference
- 分析一番,将公交聚类,BTGrp1-4
- 将TGrp与BTGrp 结合起来分析,分析乘客的行为
Spatial analysis:
- k-means聚类方法将其分成四类
- SGrp1:only one frequently accessed OD-pair
- SGrp2:two frequently accessed OD -pairs
- SGrp3:one relatively frequnetly accessed OD-pair and one general accessed OD-pair
- SGrp4:no remarkable frequently accessed OD-pair
- SGrp与TGrp的关系:使用条件概率,发现概率很大
- 解释为什么有些人choose metro in a single trip and choose bus in another trip ,instead of metro in round trips.
Anomaly analysis:
- W:the radio of abnomal travel time trips
- P:the radio of abnomal OD pairs of a passengers
- 将概率W与P为40%一下的去掉,WP二维散点表,得到几类异常
understanding-论文的更多相关文章
- 【转载】最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句 ...
- Attention is all you need及其在TTS中的应用Close to Human Quality TTS with Transformer和BERT
论文地址:Attention is you need 序列编码 深度学习做NLP的方法,基本都是先将句子分词,然后每个词转化为对应的的词向量序列,每个句子都对应的是一个矩阵\(X=(x_1,x_2,. ...
- SCNN车道线检测--(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)
Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artific ...
- 深度学习论文翻译解析(十):Visualizing and Understanding Convolutional Networks
论文标题:Visualizing and Understanding Convolutional Networks 标题翻译:可视化和理解卷积网络 论文作者:Matthew D. Zeiler Ro ...
- Visualizing and Understanding Convolutional Networks论文复现笔记
目录 Visualizing and Understanding Convolutional Networks 论文复现笔记 Abstract Introduction Approach Visual ...
- 论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Gra ...
- [论文解读]CNN网络可视化——Visualizing and Understanding Convolutional Networks
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexN ...
- 论文笔记:Visualizing and Understanding Convolutional Networks
2014 ECCV 纽约大学 Matthew D. Zeiler, Rob Fergus 简单介绍(What) 提出了一种可视化的技巧,能够看到CNN中间层的特征功能和分类操作. 通过对这些可视化信息 ...
- 【网络结构可视化】Visualizing and Understanding Convolutional Networks(ZF-Net) 论文解析
目录 0. 论文地址 1. 概述 2. 可视化结构 2.1 Unpooling 2.2 Rectification: 2.3 Filtering: 3. Feature Visualization 4 ...
- 论文阅读 | Probing Neural Network Understanding of Natural Language Arguments
[code&data] [pdf] ARCT 任务是 Habernal 等人在 NACCL 2018 中提出的,即在给定的前提(premise)下,对于某个陈述(claim),相反的两个依据( ...
随机推荐
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- 首师大附中互测题:LJX的校园:入学典礼【C003】
[C003]LJX的校园:入学典礼[难度C]—————————————————————————————————————————————————————————————————————————————— ...
- debian 安装svn apache 小记. AuthzSVNAccessFile 不生效问题.
docker 使用docker镜像搭建svn+Apache环境 https://my.oschina.net/u/2006667/blog/637882 1,安装 apache ,svnapt-get ...
- DAO 开发模式的几个类
1, vo --> Emp.java 包括getter setter方法 2, dbc --> DatabaseConnection.java 数据库打开关闭 3, ...
- Git fetch和git pull的区别
Git中从远程的分支获取最新的版本到本地有这样2个命令:1. git fetch:相当于是从远程获取最新版本到本地,不会自动merge git fetch origin mastergit log - ...
- Intellij如何设置编译后自动重新加载class文件?
前段时间突然发现Intellij不能自动重新加载类了,每次编译后都要重新启动项目,才能显示更新效果,后来网上查询Intellij下如何配置热部署,都说是要配置构件,然后在web容器的编辑页面选择upd ...
- 用 Python 排序数据的多种方法
用 Python 排序数据的多种方法 目录 [Python HOWTOs系列]排序 Python 列表有内置就地排序的方法 list.sort(),此外还有一个内置的 sorted() 函数将一个可迭 ...
- struts2上传图片的全过程
struts2上传图片的过程 1.写一个上传的jsp页面upload_image.jsp,内容如下:<body><center> <font color=" ...
- javascript循环和数组的基础练习
九九乘法表 <script> //外层循环行数 for(var i=0; i<=9; i++){ //内曾循环控制每一行的列数 for(var j=0;j<=i; j++){ ...
- PHP 全局变量 $_REQUEST 的分析
PHP 中的 $_REQUEST 变量是指 HTTP Request 变量. $_REQUEST 变量中包含哪些值,需要根据 php.ini 中的 request_order 设置,我测试的环境是 P ...