Elasticsearch支持最直方图聚合,它在数字字段自动创建桶,并会扫描全部文档,把文档放入相应的桶中。这个数字字段既可以是文档中的某个字段,也可以通过脚本创建得出的。

桶的筛选规则

举个例子,有一个price字段,这个字段描述了商品的价格,现在想每隔5就创建一个桶,统计每隔区间都有多少个文档(商品)。

如果有一个商品的价格为32,那么它会被放入30的桶中,计算的公式如下:

rem = value % interval
if (rem < 0) {
rem += interval
}
bucket_key = value - rem

通过上面的方法,就可以确定文档属于哪一个桶。

不过也有一些问题存在,由于上面的方法是针对于整型数据的,因此如果字段是浮点数,那么需要先转换成整型,再调用上面的方法计算。问题来了,正数还好,如果该值是负数,就会出现计算出错。比如,一个字段的值为-4.5,在进行转换整型时,转换成了-4。那么按照上面的计算,它就会放入-4的桶中,但是其实-4.5应该放入-6的桶中。

min_doc_count过滤

聚合的dsl如下:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50
}
}
}
}

得到的数据为:

{
"aggregations": {
"prices" : {
"buckets": [
{
"key": 0,
"doc_count": 2
},
{
"key": 50,
"doc_count": 4
},
{
"key": 100,
"doc_count": 0
},
{
"key": 150,
"doc_count": 3
}
]
}
}
}

上面的数据中,100-150是没有文档的,但是却显示为0.如果不想要显示count为0的桶,可以通过min_doc_count来设置。

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"min_doc_count" : 1
}
}
}
}

这样返回的数据,就不会出现为0的了。

{
"aggregations": {
"prices" : {
"buckets": [
{
"key": 0,
"doc_count": 2
},
{
"key": 50,
"doc_count": 4
},
{
"key": 150,
"doc_count": 3
}
]
}
}
}

extend_bounds,指定最小值和最大值边界

默认情况下,ES中的histogram聚合起始都是自动的,比如price字段,如果没有商品的价钱在0-5之间,0这个桶就不会显示。如果最便宜的商品是11,那么第一个桶就是10.

可以通过设置extend_bounds强制规定最小值和最大值,但是要求必须min_doc_count不能大于0,不然即便是规定了边界,也不会返回。

另外需要注意的是,如果规定的extend_bounds.min要大于文档中的最小值,那么就会按照文档中的最小值来(extend_bounds.max也是如此)。

比如下面的这个例子,规定的extend_bounds.min和max分别是40和50,但是文档中含有比40还要小的数据,因此桶的定义仍然是按照文档中的数据来。

order排序

排序大同小异,可以按照_key的名字排序:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "_key" : "desc" }
}
}
}
}

也可以按照文档的数目:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "_count" : "asc" }
}
}
}
}

或者指定排序的聚合:

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"order" : { "price_stats.min" : "asc" }
},
"aggs" : {
"price_stats" : { "stats" : {} }
}
}
}
}

keyed设置返回的方式

正常返回的数据如上面所示,是按照数组的方式返回。如果要按照名字返回,可以设置keyed为true

{
"aggs" : {
"prices" : {
"histogram" : {
"field" : "price",
"interval" : 50,
"keyed" : true
}
}
}
}

那么返回的数据就为:

{
"aggregations": {
"prices": {
"buckets": {
"0": {
"key": 0,
"doc_count": 2
},
"50": {
"key": 50,
"doc_count": 4
},
"150": {
"key": 150,
"doc_count": 3
}
}
}
}
}

缺省的值

缺省值通过MissingValue设置:

{
"aggs" : {
"quantity" : {
"histogram" : {
"field" : "quantity",
"interval": 10,
"missing": 0
}
}
}
}

Elasticsearch聚合 之 Histogram 直方图聚合的更多相关文章

  1. Elasticsearch聚合 Date Histogram聚合

    转 http://www.cnblogs.com/xing901022/p/4951603.html Elasticsearch的聚合主要分成两大类:metric和bucket,2.0中新增了pipe ...

  2. Elasticsearch聚合 之 Range区间聚合

    Elasticsearch提供了多种聚合方式,能帮助用户快速的进行信息统计与分类,本篇主要讲解下如何使用Range区间聚合. 最简单的例子,想要统计一个班级考试60分以下.60到80分.80到100分 ...

  3. ElasticSearch 2 (35) - 信息聚合系列之近似聚合

    ElasticSearch 2 (35) - 信息聚合系列之近似聚合 摘要 如果所有的数据都在一台机器上,那么生活会容易许多,CS201 课商教的经典算法就足够应付这些问题.但如果所有的数据都在一台机 ...

  4. elasticsearch聚合之bucket terms聚合

    目录 1. 背景 2. 前置条件 2.1 创建索引 2.2 准备数据 3. 各种聚合 3.1 统计人数最多的2个省 3.1.1 dsl 3.1.2 运行结果 3.2 统计人数最少的2个省 3.2.1 ...

  5. Elasticsearch学习系列四(聚合搜索)

    聚合分析 聚合分析是数据库中重要的功能特性,完成对一个查询的集中数据的聚合计算.如:最大值.最小值.求和.平均值等等.对一个数据集求和,算最大最小值等等,在ES中称为指标聚合,而对数据做类似关系型数据 ...

  6. Flask聚合函数(基本聚合函数、分组聚合函数、去重聚合函数))

    Flask聚合函数 1.基本聚合函数(sun/count/max/min/avg) 使用聚合函数先导入:from sqlalchemy import func 使用方法: sun():func.sum ...

  7. 把 Elasticsearch 当数据库使:聚合后排序

    使用 https://github.com/taowen/es-monitor 可以用 SQL 进行 elasticsearch 的查询.有的时候分桶聚合之后会产生很多的桶,我们只对其中部分的桶关心. ...

  8. Elasticsearch 聚合统计与SQL聚合统计语法对比(一)

    Es相比关系型数据库在数据检索方面有着极大的优势,在处理亿级数据时,可谓是毫秒级响应,我们在使用Es时不仅仅进行简单的查询,有时候会做一些数据统计与分析,如果你以前是使用的关系型数据库,那么Es的数据 ...

  9. Elasticsearch 第六篇:聚合统计查询

    h2.post_title { background-color: rgba(43, 102, 149, 1); color: rgba(255, 255, 255, 1); font-size: 1 ...

随机推荐

  1. Asp.net MVC4 与 Web Form 并存

          Web Forms 与 MVC 的asp.net 基础架构是相同的.MVC 的路由机制并不只MVC 特有的,它与WebForm 也是共享相同的路由机制.Web Forms 的Http请求针 ...

  2. Swift 对比学习 (一)

    Swift相对Objective-C来说,有过之而无不及,并与Objective-C无缝混编,可谓利器.在Swift中可以看到不同的编程语言的影子,天下语言一大抄,这样也好,减低了不同语言的学习成本. ...

  3. [MySQL][Spider][VP]Spider-3.1 VP-1.0 发布

    我很高兴的宣布 Spider 存储引擎 3.1 Beta 版本和垂直分区存储引擎 1.0 Beta 版本发布了. Spider 是数据库拆分的存储引擎: http://spiderformysql.c ...

  4. js 数组遍历for..in弊端

    //for..in在数组中的弊端 原则上数组Array对象是不能操作的,但是有些程序员开始不注意把Array的原型链上添加了方法就会出现意想不到的bug //例如 ,,]; Array.prototy ...

  5. 【Python】调用WPS V9 API,实现Word转PDF

    WPS 的API,即COM,主要分为V8与V9两个版本,网上容易查到的例子,都是V8的. 现在官网上可以下载的,2013抢鲜版,就是V9的API. Python 调用COM 需要安装 Python f ...

  6. [.net 面向对象编程基础] (12) 面向对象三大特性——继承

    [.net 面向对象编程基础] (12) 面向对象三大特性——继承 上节我们说了面向对象的三大特性之一的封装,解决了将对同一对象所能操作的所有信息放在一起,实现统一对外调用,实现了同一对象的复用,降低 ...

  7. HOOK技术的一些简单总结

    好久没写博客了, 一个月一篇还是要尽量保证,今天谈下Hook技术. 在Window平台上开发任何稍微底层一点的东西,基本上都是Hook满天飞, 普通应用程序如此,安全软件更是如此, 这里简单记录一些常 ...

  8. [nRF51822] 3、 新年也来个总结——图解nRF51 SDK中的Button handling library和FIFO library

    :本篇是我翻译并加入自己理解的nRF51 SDK中按钮相关操作的库和先进先出队列库.虽然是nRF51的SDK,但是通过此文你将更多地了解到在BSP(板级支持)上层嵌入式程序或OS的构建方法. 1.按钮 ...

  9. Java枚举类型getClass和getDeclaringClass区别(未完待续)

    Java中的枚举类型有getClass()和getDeclaringClass()两个方法,在通常情况下这两个方法返回的类型一样,在某些场景下会有不同的表现 参照 http://stackoverfl ...

  10. 汇编 int10h(转)

    原文:http://www.cnblogs.com/magic-cube/archive/2011/10/19/2217676.html INT 10H 是由 BIOS 对屏幕及显示器所提供的服务程序 ...