关于SPFA算法的优化方式

这篇随笔讲解信息学奥林匹克竞赛中图论部分的求最短路算法SPFA的两种优化方式。学习这两种优化算法需要有SPFA朴素算法的学习经验。在本随笔中SPFA朴素算法的相关知识将不予赘述。

上课!

No.1 SLF优化(Small Label First)

顾名思义,这种优化采用的方式是把较小元素提前。

就像dijkstra算法的堆优化一样。我们在求解最短路算法的时候是采取对图的遍历,每次求最小边的一个过程,为了寻找最小边,我们需要枚举每一条出边,如果我们一上来就找到这个边,那当然是非常爽的。一次找一次爽,一直找一直爽。所以我们采用了这种优化方式。

具体实现方式是把原来的队列变成双端队列,如果新入队的元素比队首元素还要小,就加入到队首,否则排到队尾。

模板如下:

void spfa()
{
memset(dist,0x3f,sizeof(dist));
memset(v,0,sizeof(v));
deque<int> q;
q.push_back(1);
v[1]=1;
dist[1]=0;
while(!q.empty())
{
int x=q.front();
q.pop_front();
v[x]=0;
for(int i=head[x];i;i=nxt[i])
{
int y=to[i];
if(dist[y]>dist[x]+val[i])
{
dist[y]>dist[x]+val[i];
if(v[y]==0)
{
if(dist[y]<=dist[q.pront()])
q.push_front(y);
else
q.push_back(y);
v[y]=1;
}
}
}
}
}

No.2 LLL优化(Large Label Last)

顾名思义,它的策略是把大的元素放到后面。

你会说,这不跟上面的一样么?

不不不,这个优化针对的是出队元素。它的实现过程是:对于每个出队元素,比较它的dist[]和队列中dist的平均值,如果它的dist[]更大,将它弹出放到队尾。以此类推,直至dist[x]小于其平均值。

模板:

void spfa()
{
memset(dis, 0x3f, sizeof(dis));
queue<int> q;
q.push(1);
v[1] = 1;
dist[1] = 0;
cnt = 1;
while(!Q.empty())
{
int x = q.front();
while (dis[x]*cnt > sum)
{
q.pop();
q.push(x);
x = q.front();
}
q.pop();
cnt--;
sum -= dist[x];
v[x] = 0;
for (int i = head[x]; i ; i=nxt[i])
{
int y=to[i];
if (dist[y] > dist[x] + val[i])
{
dist[y] = dist[x] + val[i];
if (v[y]==0)
{
q.push(y);
sum += dist[y];
cnt++;
}
}
}
}
}

重点来了!!

No.3 SLF+LLL同时优化!

听名字就很高级。

是的,的确很高级,不仅高级,而且快。

我就直接上模板了。

void spfa()
{
memset(dist, 0x3f, sizeof(dist));
memset(v,0,sizeof(v));
deque<int> q;
q.push_back(1);
v[1] = 1;
dist[1] = 0;
cnt = 1;
while (!q.empty())
{
int x = q.front();
while (cnt*dist[x] > sum)
{
q.pop_back();
q.push_back(x);
x = q.front();
}
q.pop_front();
cnt--;
sum -= dist[x];
v[x] = 0;
for (int i = head[x]; i ; i=nxt[i])
{
int y=to[i];
if (dist[y] > dist[x] + val[i])
{
dist[y] = dist[x] + val[i];
if (!v[y])
{
if (dist[y] <= dist[q.front()])
q.push_front(y);
else
q.push_back(y);
v[y] = 1;
sum += dist[y];
cnt++;
}
}
}
}
}

下课!祝同学们AK IOI!!

关于SPFA算法的优化方式的更多相关文章

  1. 《SPFA算法的优化及应用》——姜碧野(学习笔记)

    一.核心性质:三角不等式.最短路满足d[v]<=d[u]+w(u,v) 二.SPFA两种实现: 常见的是基于bfs的,这是直接对bellman-ford用队列维护.根据最短路的长度最长为(n-1 ...

  2. 并不对劲的图论专题(三):SPFA算法的优化

    1.bzoj1489-> 这是个新套路. 我们希望找到最小的x,那么可以二分x,然后判断是否存在圈的边权的平均值小于等于x. 设圈的边权依次为w1,w2,w3,…,wk,平均值为p, 则有p= ...

  3. 蓝书3.3 SPFA算法的优化

    T1 最小圈 bzoj 1486 题目大意: 一个环的权值平均值为定义为一个这个环上所有边的权值和除以边数 求最小的环的权值平均值 思路: 二分一个值 把所有边减去这个值 判断是否有负环 #inclu ...

  4. 队列优化dijsktra(SPFA)的玄学优化

    转载:大佬博客 最近想到了许多优化spfa的方法,这里想写个日报与大家探讨下 前置知识:spfa(不带任何优化) 由于使用较多 STLSTL ,本文中所有代码的评测均开启 O_2O2​ 优化 对一些数 ...

  5. Dijkstra算法堆优化详解

    DIJ算法的堆优化 DIJ算法的时间复杂度是\(O(n^2)\)的,在一些题目中,这个复杂度显然不满足要求.所以我们需要继续探讨DIJ算法的优化方式. 堆优化的原理 堆优化,顾名思义,就是用堆进行优化 ...

  6. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  7. SPFA求最短路——Bellman-Ford算法的优化

    SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环.SPFA 最坏情况下复杂度和朴素 Bellman-Ford 相同,为 O(VE), ...

  8. SPFA算法 - Bellman-ford算法的进一步优化

    2017-07-27  22:18:11 writer:pprp SPFA算法实质与Bellman-Ford算法的实质一样,每次都要去更新最短路径的估计值. 优化:只有那些在前一遍松弛中改变了距离点的 ...

  9. luogu P3371 & P4779 单源最短路径spfa & 最大堆优化Dijkstra算法

    P3371 [模板]单源最短路径(弱化版) 题目背景 本题测试数据为随机数据,在考试中可能会出现构造数据让SPFA不通过,如有需要请移步 P4779. 题目描述 如题,给出一个有向图,请输出从某一点出 ...

随机推荐

  1. 3. java 方法入门

    一.方法定义 1. 定义格式 public static void 方法名称(){ 方法体 } 1. 方法名称:命名和变量一致,小驼峰式 2. 方法体:大括号中可以包含任意条语句 注意事项: 1. 方 ...

  2. fallowing-travelvue

    1. 2.Header.vue 3.Swiper.vue . 4.Icons.vue 解决了上次轮播图--分页小圆点不显示的问题,本来以为图片应该都可以,结果换了轮播长图之后,小圆点听话的显示出啦 而 ...

  3. 在 VS 中查看所有线程

    查看当前所有线程 在程序中打断点,然后启动调试(注意:线程窗口需要启动调试才可以看得到)点击 Debug > Windows > Threads 线程窗口如下:

  4. CSS3的nth-child() 选择器

    CSS3的nth-child() 选择器,表格奇偶行变色 nth-child() 应用背景 CSS3的nth-child() 选择器,我之前很少用,在做表格偶数行变色的时候,我通常在绑定的时候,做一个 ...

  5. 算法问题实战策略 NTHLON

    地址 https://algospot.com/judge/problem/read/NTHLON #include <iostream> #include <vector> ...

  6. 14.web4

    右键查看源代码 先进行URL解码 解码之后可以得到一串 js 代码, 具体逻辑大概就是 var p1 = "67d709b2b"var p2 = "aa648cf6e87 ...

  7. 趣谈Linux操作系统学习笔记:第二十九讲

    一.引子 在这之前,有一点你需要注意.解析系统调用是了解内核架构最有力力的一把钥匙,这里我们只要重点关注这几个最重要的系统调用就可以了 1.mount 系统调用用于挂载文件系统:2.open 系统调用 ...

  8. HTML5之图片转base64编码

    之前在群里看到很多小哥哥小姐姐讨论关于图片base64互转的方法,刚好我之前用到的一个方法给大家分享一下. <!Doctype html><html> <head> ...

  9. #3144. 「APIO 2019」奇怪装置

    #3144. 「APIO 2019」奇怪装置 题目描述 考古学家发现古代文明留下了一种奇怪的装置.该装置包含两个屏幕,分别显示两个整数 \(x\) 和 \(y\). 经过研究,科学家对该装置得出了一个 ...

  10. 参数检查(@property)

    绑定属性时,如果直接把属性暴露出去,虽然写起来很简单,但无法对参数进行检查,导致属性被随便修改 因此,可以通过在类内定义get()获取属性值,定义set()对属性值进行设定并对设定值进行检查 但通过定 ...