这道题正解其实是LCT,然而貌似SPFA也可以成功水过,所以根本不知道LCT的我只能说SPFA了。

  这道题最大的限制是两种精灵就意味着一条道可能有两个权值,因此我们需要去将其中一个固定,然后再推另一个权值,也就是说,我们可以,枚举每一条边的a,然后只走a值不大于他的边。

  然而并没有那么容易,本题数据极大,这种算法一半分都拿不到,因此我们需要别的优化,首先,我们可以现将每个边按照a的大小进行排序,然后从小到大边枚举边加边,这时dis数组就不必去每次spfa都清空了,而且每次枚举边都可以在原来的图的基础上直接加边,且当前边一定都是能走的边,不必再算上那些不满足要求的边了,可以大大地优化是时间复杂度。

  

 #include<iostream>
#include<cstdlib>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<string>
#include<cmath>
using namespace std;
int n,m,zz,a[];
struct ro{
int to,from;
int next;
int a,b;
}road[];
struct no{
int a,b,from,to;
}node[];
void build(int x,int y,int z,int zx)
{
zz++;
road[zz].from=x;
road[zz].to=y;
road[zz].next=a[x];
road[zz].a=z;
road[zz].b=zx;
a[x]=zz;
}
int dis[];
queue<int> q1;
bool rd[];
int ans=0x7fffffff;
void spfa(int x0,int y0,int z,int zx){
rd[x0]=rd[y0]=;
q1.push(x0);
q1.push(y0);
while(!q1.empty())
{
int x=q1.front();
q1.pop();
rd[x]=;
for(int i=a[x];i>;i=road[i].next)
{
int y=road[i].to; if(dis[y]>max(dis[x],road[i].b))
{
dis[y]=max(dis[x],road[i].b);
if(!rd[y])
{
q1.push(y);
rd[y]=;
}
}
}
}
int an=;
an=dis[n];
if(an!=dis[]&&ans>an+z)
ans=an+z;
}
int px(no a,no b)
{
return a.a<b.a;
}
int main(){
memset(dis,0x7f,sizeof(dis));
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x,y,z,zx;
scanf("%d%d%d%d",&x,&y,&z,&zx);
node[i].a=z;
node[i].b=zx;
node[i].to=y;
node[i].from=x;
}
sort(node+,node+m+,px);
dis[]=,rd[]=;
q1.push();
for(int i=;i<=m;i++)
{
int bj=i;
build(node[i].from,node[i].to,node[i].a,node[i].b);
build(node[i].to,node[i].from,node[i].a,node[i].b);
spfa(node[i].from,node[i].to,node[i].a,node[i].b);
}
if(ans==0x7fffffff) ans=-;
printf("%d\n",ans);
// while(1);
return ;
}

[NOI2014]魔法森林题解的更多相关文章

  1. NOI2014魔法森林题解报告

    题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,-,n,边标号为 1,2,3,-, ...

  2. BZOJ3669:[NOI2014]魔法森林——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3669 https://www.luogu.org/problemnew/show/P2387 为了得 ...

  3. [NOI2014]魔法森林 LCT

    题面 [NOI2014]魔法森林 题解 一条路径的代价为路径上的\(max(a[i]) + max(b[i])\),因为一条边同时有$a[i], b[i]$2种权值,直接处理不好同时兼顾到,所以我们考 ...

  4. NOI2014 魔法森林

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 106  Solved: 62[Submit][Status] ...

  5. bzoj 3669: [Noi2014]魔法森林

    bzoj 3669: [Noi2014]魔法森林 Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号 ...

  6. 「luogu2387」[NOI2014] 魔法森林

    「luogu2387」[NOI2014] 魔法森林 题目大意 \(n\) 个点 \(m\) 条边的无向图,每条边上有两个权值 \(a,b\),求从 \(1\) 节点到 \(n\) 节点 \(max\{ ...

  7. bzoj 3669: [Noi2014]魔法森林 动态树

    3669: [Noi2014]魔法森林 Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 363  Solved: 202[Submit][Status] ...

  8. BZOJ 3669: [Noi2014]魔法森林( LCT )

    排序搞掉一维, 然后就用LCT维护加边MST. O(NlogN) ------------------------------------------------------------------- ...

  9. BZOJ_3669_[Noi2014]魔法森林_LCT

    BZOJ_3669_[Noi2014]魔法森林_LCT Description 为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节 ...

随机推荐

  1. Windows 10开发基础——文件、文件夹和库(二)

    主要内容: 使用选取器打开和保存文件 关于文件.文件夹和库,如果深究其实还是有比较多的内容,我们这一次来学习一下选取器就收了.还有上篇博文中读写文本文件的三种方式可以细细体会一下. 文件选取器包含文件 ...

  2. 零元学Expression Blend 4 - Chapter 17 用实例了解互动控制项「CheckBox」I

    原文:零元学Expression Blend 4 - Chapter 17 用实例了解互动控制项「CheckBox」I 本章将教大家如何运用CheckBox做实作上的变化:教你如何把CheckBox变 ...

  3. NuGet安装包重新安装

    Update-Package -reinstall 引用: https://docs.microsoft.com/zh-cn/nuget/consume-packages/reinstalling-a ...

  4. missing equal sign

    "UPDATE TB_BOOKINGSET REC_LOC_CODE = ?,CUSTOMER_ADDR?WHERE BOOKING_NO=? AND TRANSPORT_MODE=? &q ...

  5. 核心思想:许多公司都没有认识到云储存的革命性(类似QQ把它搞成了用户的家、再也离不开了)

    在云储存刚刚兴起的时候,也就是dropbox刚刚进入大家视野的时候.许多人都是简单的认为这只是一个提供在线存储的服务而已,许多公司都没有认识到云储存的革命性. 对于这些大公司贸然进入一些新的领域是需要 ...

  6. Delphi 编写DLL动态链接库文件的知识和样例(有详细步骤,很清楚)

    一.DLL动态链接库文件的知识简介: Windows的发展要求允许同时运行的几个程序共享一组函数的单一拷贝.动态链接库就是在这种情况下出现的.动态链接库不用重复编译或链接,一旦装入内存,Dlls函数可 ...

  7. python中的内置函数(2)

    一.lambda匿名函数定义:为了解决一些简单的需求而设计的一句话函数例子:计算n的n次方 def func(n):#正常的写法 return n**2 f=lambda n:n**2 这里的lamb ...

  8. C语言实现常用数据结构——二叉树

    #include<stdio.h> #include<stdlib.h> #define SIZE 10 typedef struct Tree { int data; str ...

  9. CentOS7.5上FTP服务的安装与使用

    1.FTP简介 1.1FTP:File Transfer Protocol 文件传输协议 FTP是用于在网络上进行文件传输的一套标准协议,使用客户/服务器模式.它属于网络传输协议的应用层.文件传送(f ...

  10. 重磅发布:阿里开源 OpenJDK 长期支持版本 Alibaba Dragonwell

    原文地址:https://yq.aliyun.com/articles/694603 本文作者:阿里开源  本文来自云栖社区合作伙伴"阿里系统软件技术",了解相关信息可以关注&qu ...