【十大经典数据挖掘算法】系列

  1. C4.5
  2. K-Means
  3. SVM
  4. Apriori
  5. EM
  6. PageRank
  7. AdaBoost
  8. kNN
  9. Naïve Bayes
  10. CART

1. 关联分析

关联分析是一类非常有用的数据挖掘方法,能从数据中挖掘出潜在的关联关系。比如,在著名的购物篮事务(market basket transactions)问题中,

TID Iterms
1 {Bread, Milk}
2 {Bread, Diapers, Beer, Eggs}
3 {Milk, Diapers, Beer, Cola}
4 {Bread, Milk, Diapers, Beer}
5 {Bread, Milk, Beer, Cola}

关联分析则被用来找出此类规则:顾客在买了某种商品时也会买另一种商品。在上述例子中,大部分都知道关联规则:{Diapers} → {Beer};即顾客在买完尿布之后通常会买啤酒。后来通过调查分析,原来妻子嘱咐丈夫给孩子买尿布时,丈夫在买完尿布后通常会买自己喜欢的啤酒。但是,如何衡量这种关联规则是否靠谱呢?下面给出了度量标准。

支持度与置信度

关联规则可以描述成:项集 → 项集。项集\(X\)出现的事务次数(亦称为support count)定义为:

\[
\sigma (X) = |t_i|X \subseteq t_i, t_i \in T|
\]

其中,\(t_i\)表示某个事务(TID),\(T\)表示事务的集合。关联规则\(X \longrightarrow Y\)的支持度(support):

\[
s(X \longrightarrow Y) = \frac{\sigma (X \cup Y)}{|T|}
\]

支持度刻画了项集\(X \cup Y\)的出现频次。置信度(confidence)定义如下:

\[
s(X \longrightarrow Y) = \frac{\sigma (X \cup Y)}{\sigma (X)}
\]

对概率论稍有了解的人,应该看出来:置信度可理解为条件概率\(p(Y|X)\),度量在已知事务中包含了\(X\)时包含\(Y\)的概率。

对于靠谱的关联规则,其支持度与置信度均应大于设定的阈值。那么,关联分析问题即等价于:对给定的支持度阈值min_sup、置信度阈值min_conf,找出所有的满足下列条件的关联规则:

\begin{aligned}
& 支持度 >= min\_sup \cr
& 置信度 >= min\_conf \cr
\end{aligned}

把支持度大于阈值的项集称为频繁项集(frequent itemset)。因此,关联规则分析可分为下列两个步骤:

  • 生成频繁项集\(F=X \cup Y\);
  • 在频繁项集\(F\)中,找出所有置信度大于最小置信度的关联规则\(X \longrightarrow Y\)。

暴力方法

若(对于所有事务集合)项的个数为\(d\),则所有关联规则的数量:

\[
\begin{aligned}
& \sum_{i}^d C_d^i \sum_{j}^{d-i} C_{d-i}^j \cr
= & \sum_{i}^d C_d^i ( 2^{d-i} -1) \cr
= & \sum_{i}^d C_d^i * 2^{d-i} - 2^d + 1 \cr
= & (3^d - 2^d) - 2^d +1 \cr
= & 3^d - 2^{d+1} + 1
\end{aligned}
\]

如果采用暴力方法,穷举所有的关联规则,找出符合要求的规则,其时间复杂度将达到指数级。因此,我们需要找出复杂度更低的算法用于关联分析。

2. Apriori算法

Agrawal与Srikant提出Apriori算法,用于做快速的关联规则分析。

频繁项集生成

根据支持度的定义,得到如下的先验定理:

  • 定理1:如果一个项集是频繁的,那么其所有的子集(subsets)也一定是频繁的。

这个比较容易证明,因为某项集的子集的支持度一定不小于该项集。

  • 定理2:如果一个项集是非频繁的,那么其所有的超集(supersets)也一定是非频繁的。

定理2是上一条定理的逆反定理。根据定理2,可以对项集树进行如下剪枝:

项集树共有项集数:\(\sum_{k=1}^d k \times C_{d}^k = d \cdot 2^{d-1}\)。显然,用穷举的办法会导致计算复杂度太高。对于大小为\(k-1\)的频繁项集\(F_{k-1}\),如何计算大小为\(k\)的频繁项集\(F_k\)呢?Apriori算法给出了两种策略:

  1. \(F_k = F_{k-1} \times F_1\)方法。之所以没有选择\(F_{k-1}\)与(所有)1项集生成\(F_k\),是因为为了满足定理2。下图给出由频繁项集\(F_2\)与\(F_1\)生成候选项集\(C_3\):

  2. \(F_k = F_{k-1} \times F_{k-1}\)方法。选择前\(k-2\)项均相同的\(f_{k-1}\)进行合并,生成\(F_{k-1}\)。当然,\(F_{k-1}\)的所有\(f_{k-1}\)都是有序排列的。之所以要求前\(k-2\)项均相同,是因为为了确保\(F_k\)的\(k-2\)项都是频繁的。下图给出由两个频繁项集\(F_2\)生成候选项集\(C_3\):

生成频繁项集\(F_k\)的算法如下:

关联规则生成

关联规则是由频繁项集生成的,即对于\(F_k\),找出项集\(h_m\),使得规则\(f_k-h_m \longrightarrow h_m\)的置信度大于置信度阈值。同样地,根据置信度定义得到如下定理:

定理3:如果规则\(X \longrightarrow Y-X\)不满足置信度阈值,则对于\(X\)的子集\(X'\),规则\(X' \longrightarrow Y-X'\)也不满足置信度阈值。

根据定理3,可对规则树进行如下剪枝:

关联规则的生成算法如下:

3. 参考资料

[1] Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to Data Mining.

【十大经典数据挖掘算法】Apriori的更多相关文章

  1. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  2. 【十大经典数据挖掘算法】EM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 极大似然 极大似然(Maxim ...

  3. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  4. 【十大经典数据挖掘算法】SVM

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART SVM(Support Vector ...

  5. 【十大经典数据挖掘算法】Naïve Bayes

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes) ...

  6. 【十大经典数据挖掘算法】C4.5

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 决策树模型与学习 决策树(de ...

  7. 【十大经典数据挖掘算法】k-means

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 k-means与kNN虽 ...

  8. 【十大经典数据挖掘算法】kNN

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 引言 顶级数据挖掘会议ICDM ...

  9. 【十大经典数据挖掘算法】CART

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 前言 分类与回归树(Class ...

随机推荐

  1. PHP如何使用GeoIP数据库

    1.首先下载GeoIP的IP库.参考<利用GeoIP数据库及API进行地理定位查询>.下载后解压,得到一个GeoIP.dat文件 2.新建一个文件geoip.inc.内容为 <?ph ...

  2. 天气预报API开发

    天气预报API开发 一.        寻觅篇 最近想要跟着视频练习一下利用API开发一个天气预报系统,就在网上找了一下可以用的API,结果好多都已经失效了... 1.       百度车联网天气预报 ...

  3. Your awesome titleHH

    Welcome to Jekyll! Your awesome titleHH About Blogging Like a Hacker Welcome to Jekyll! Jan 9, 2016 ...

  4. 代码自定义双色title的按钮

    所图所示,通过代码自定义这样的按钮. .h文件 // // CustomButtom.h // testPlus // // Created by 鹰眼 on 14/10/20. // Copyrig ...

  5. Linq 那些事儿

    今天突然好奇当linq进行循环遍历的时候,如果满足条件的时候还会不会继续循环剩余的数据,做了个小实验. 首先看看上代码 这个是测试的类 public class TestLinq { int _Num ...

  6. 公司内部培训AlwaysOn PPT分享

    公司内部培训AlwaysOn PPT分享 下载地址: http://files.cnblogs.com/files/lyhabc/alwayson.ppt

  7. java中文乱码解决之道(六)-----javaWeb中的编码解码

    在上篇博客中LZ介绍了前面两种场景(IO.内存)中的java编码解码操作,其实在这两种场景中我们只需要在编码解码过程中设置正确的编码解码方式一般而言是不会出现乱码的.对于我们从事java开发的人而言, ...

  8. char varchar nchar nvarcharar到底有多大区别

    首先说明下,ASP.NET MVC系列还在龟速翻译中. 工作好多年,基础知识甚是薄弱,决定以后在coding(cv操作)的时候尽量多google下,然后总结下来,目的有三:     1. 加深自己的理 ...

  9. defered,promise回顾

    defered,promise回顾 http://www.ruanyifeng.com/blog/2011/08/a_detailed_explanation_of_jquery_deferred_o ...

  10. WaitType:ASYNC_NETWORK_IO

    官方文档的定义,是指SQL Server 产生的结果集需要经过Network传递到Client,Network不能很快将结果集传输到Client,导致结果集仍然驻留在SQL Server的Sessio ...