【UOJ#388】【UNR#3】配对树(线段树,dsu on tree)

题面

UOJ

题解

考虑一个固定区间怎么计算答案,把这些点搞下来建树,然后\(dp\),不难发现一个点如果子树内能够匹配的话就一定会匹配完,所以\(dp\)可以做到线性。

那么根据上面的\(dp\)方式,一条边会被匹配到,当且仅当把这条边删掉之后,两个连通块内分别有奇数个目标点。那么如果我们考虑枚举每一条边,然后把子树内的点给标记一下,于是变成了在原序列上求有多少个偶数区间满足有偶数个点被标记,这个问题可以做一个前缀和,把奇偶位置拆开,于是答案就是两个位置中的奇数个数乘上偶数个数。这个过程可以拿线段树维护。

接下来就变成每次要标记子树中的所有点,每次暴力显然不合理。

改成\(dsu\)这个复杂度就很合理了。这个复杂度似乎是两个\(log\)的。

#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
#define MAX 100100
#define MOD 998244353
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,ans;
struct Line{int v,next,w;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
int wf[MAX],sz[MAX],hson[MAX];
void dfs1(int u,int ff)
{
sz[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
wf[v]=e[i].w;dfs1(v,u);sz[u]+=sz[v];
if(sz[v]>sz[hson[u]])hson[u]=v;
}
}
#define lson (now<<1)
#define rson (now<<1|1)
struct Node{int s[2][2],r;}t[MAX<<2];
void pushup(int now)
{
t[now].s[0][0]=(t[lson].s[0][0]+t[rson].s[0][0])%MOD;
t[now].s[0][1]=(t[lson].s[0][1]+t[rson].s[0][1])%MOD;
t[now].s[1][0]=(t[lson].s[1][0]+t[rson].s[1][0])%MOD;
t[now].s[1][1]=(t[lson].s[1][1]+t[rson].s[1][1])%MOD;
}
void Build(int now,int l,int r)
{
if(l==r){t[now].s[l&1][0]+=1;return;}
int mid=(l+r)>>1;
Build(lson,l,mid);
Build(rson,mid+1,r);
pushup(now);
}
void putrev(int now)
{
swap(t[now].s[0][0],t[now].s[0][1]);
swap(t[now].s[1][0],t[now].s[1][1]);
t[now].r^=1;
}
void pushdown(int now)
{
if(!t[now].r)return;
putrev(lson);putrev(rson);
t[now].r^=1;
}
void Modify(int now,int l,int r,int L,int R)
{
if(L<=l&&r<=R){putrev(now);return;}
int mid=(l+r)>>1;pushdown(now);
if(L<=mid)Modify(lson,l,mid,L,R);
if(R>mid)Modify(rson,mid+1,r,L,R);
pushup(now);
}
vector<int> V[MAX];
bool vis[MAX];
void upd(int u,int ff)
{
for(int v:V[u])Modify(1,0,m,v,m);
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=ff&&!vis[e[i].v])upd(e[i].v,u);
}
void dfs(int u,int ff,int tp)
{
for(int i=h[u];i;i=e[i].next)
if(e[i].v!=ff&&e[i].v!=hson[u])
dfs(e[i].v,u,0);
if(hson[u])dfs(hson[u],u,1),vis[hson[u]]=true;
upd(u,ff);
int cnt=(1ll*t[1].s[0][0]*t[1].s[0][1]+1ll*t[1].s[1][0]*t[1].s[1][1])%MOD;
ans=(ans+1ll*cnt*wf[u])%MOD;
vis[hson[u]]=false;
if(!tp)upd(u,ff);
}
int main()
{
n=read();m=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read(),w=read();
Add(u,v,w);Add(v,u,w);
}
for(int i=1;i<=m;++i)V[read()].push_back(i);
Build(1,0,m);dfs1(1,0);dfs(1,0,0);
printf("%d\n",ans);
return 0;
}

【UOJ#388】【UNR#3】配对树(线段树,dsu on tree)的更多相关文章

  1. UOJ #164 [清华集训2015]V (线段树)

    题目链接 http://uoj.ac/problem/164 题解 神仙线段树题. 首先赋值操作可以等价于减掉正无穷再加上\(x\). 假设某个位置从前到后的操作序列是: \(x_1,x_2,..., ...

  2. 浅谈树套树(线段树套平衡树)&学习笔记

    0XFF 前言 *如果本文有不好的地方,请在下方评论区提出,Qiuly感激不尽! 0X1F 这个东西有啥用? 树套树------线段树套平衡树,可以用于解决待修改区间\(K\)大的问题,当然也可以用 ...

  3. [UOJ UNR#1]奇怪的线段树

    来自FallDream的博客,未经允许,请勿转载, 谢谢. 原题可以到UOJ看,传送门 如果存在一个点是白的,却有儿子是黑的,显然无解. 不然的话,只要所有黑色的“黑叶子”节点,即没有黑色的儿子的节点 ...

  4. UOJ#7. 【NOI2014】购票 | 线段树 凸包优化DP

    题目链接 UOJ #7 题解 首先这一定是DP!可以写出: \[f[i] = \min_{ancestor\ j} \{f[j] + (d[j] - d[i]) * p[i] + q[i]\}\] 其 ...

  5. UOJ #314. 【NOI2017】整数 | 线段树 压位

    题目链接 UOJ 134 题解 可爱的电音之王松松松出的题--好妙啊. 首先想一个朴素的做法! 把当前的整数的二进制当作01序列用线段树维护一下(序列的第i位就是整数中位权为\(2^k\)的那一位). ...

  6. 【uoj#228】基础数据结构练习题 线段树+均摊分析

    题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有三种:区间加.区间开根.区间求和. $n,m,a_i\le 100000$ . 题解 线段树+均摊分析 对于原来的两个数 $a$ ...

  7. UOJ#470. 【ZJOI2019】语言 虚树,线段树合并

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ470.html 前言 做完情报中心来看这个题突然发现两题有相似之处然后就会做了. 题解 首先,我们考虑将所有答案点对分为两 ...

  8. UOJ#299. 【CTSC2017】游戏 线段树 概率期望 矩阵

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ299.html 前言 不会概率题的菜鸡博主做了一道概率题. 写完发现运行效率榜上的人都没有用心卡常数——矩阵怎么可以用数组 ...

  9. UOJ#467. 【ZJOI2019】线段树 线段树,概率期望

    原文链接www.cnblogs.com/zhouzhendong/p/ZJOI2019Day1T2.html 前言 在LOJ交了一下我的代码,发现它比选手机快将近 4 倍. 题解 对于线段树上每一个节 ...

  10. 【BZOJ-3306】树 线段树 + DFS序

    3306: 树 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 792  Solved: 262[Submit][Status][Discuss] De ...

随机推荐

  1. linux远程执行ssh禁用交互方法

    ssh -o StrictHostKeyChecking=no -o UserKnownHostsFile=/dev/null ${user}@${ip} ${cmd}

  2. fastjson对于yyyy-MM-dd HH:mm格式的反序列化问题

    原创GrayHJX 发布于2017-03-14 22:56:33 阅读数 6851  收藏 展开 问题:最近在工作中遇到这么一个问题:有个实体类,它有个date类型的属性,当在这个属性加上fastjs ...

  3. FileFilter(),文件过滤器操作

    package seday03; import java.io.File;import java.io.FileFilter; /*** listFiles的重载方法允许我们传入一个文件过滤器:Fil ...

  4. DDL、DML、TCL

    一.DDL 1.创建表(CREATE) (1)数据库对大小写不敏感,只对字符串大小写敏感. (2)使用create关键字创建表.(-- 表示注释). 格式: CREATE TABLE 表名( 字段名1 ...

  5. js 时分秒转化为秒

    var time = '00:02:10'; var hour = time.split(':')[0]; var min = time.split(':')[1]; var sec = time.s ...

  6. Dynamics CRM 2015/2016新特性之三十二:新增乐观并发处理

    关注本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复215或者20160328可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong. ...

  7. IOS 11 下适配UITableView

    9月份苹果发布了IOS11和Iphone X,这一操作系统一硬件对于开发者适配上面还是造作了不少蛋疼的地方.先来看看IOS 11,这些蛋疼的需要适配的地方: 1.UIScrollView及其子类在IO ...

  8. LED 控制卡 单元板 接口引脚定义

    LED 12接口 使能 <--- OE A ---> 行选择信号 N B ---> 行选择信号 N C ---> 行选择信号 N CLK ---> 时钟信号 N LAT/ ...

  9. haproxy动静分离的验证

    线上出现过项目的静态文件被拦截,不能直接访问.所以想到了haproxy指向对应的url来访问静态文件,想到这里在网络搜索了下,确实有此功能.立即上测试环境验证下: 在listen中增加两行: ​ #定 ...

  10. Fundebug录屏插件更新至0.6.0

    摘要: 录屏插件的性能进一步优化,传输的数据体积大幅度减少. 录屏功能介绍 Fundebug提供专业的异常监控服务,当线上应用出现 BUG 的时候,我们可以第一时间报警,帮助开发者及时发现 BUG,提 ...