lightoj 1061 - N Queen Again(状压dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1061
题解:显然能满足情况的8皇后的摆法不多,于是便可以用题目给出的状态来匹配各种满足情况的摆法然后找出最小值。还有关于题目的一个条件,皇后之间的移动不能越过皇后之间,其实这个条件并没什么用,因为如果某一个皇后挡住了另一个皇后的移动那么这种摆放方式肯定是不符合的那么肯定要移动某一个所以只要先移动挡住位置的皇后就行。所以得到了两个位置之间移动所需的花费,要么0要么1要么2。然后就是怎么匹配的问题,这个可以用状压来解决。设dp[i][j]表示处理到第i行,j表示取数的状态。然后就是简单的转移,具体看一下代码。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define inf 0X3f3f3f3f
using namespace std;
struct TnT {
int x , y;
}node[10] , aim[10];
char mmp[10][10];
int ans , tm[10][10] , dp[10][1 << 10];
bool vis_col[10] , vis_l[20] , vis_r[20];
int getlen(int i , int j) {
if(node[i].x == aim[j].x && node[i].y == aim[j].y) return 0;
if(node[i].x == aim[j].x && node[i].y != aim[j].y) return 1;
if(node[i].x != aim[j].x && node[i].y == aim[j].y) return 1;
if(abs(node[i].x - aim[j].x) == abs(node[i].y - aim[j].y)) return 1;
return 2;
}
void solve() {
for(int i = 0 ; i < 8 ; i++) {
for(int j = 0 ; j < 8 ; j++) {
tm[i][j] = getlen(i , j);
}
}
memset(dp , inf , sizeof(dp));
dp[0][0] = 0;
for(int i = 0 ; i < 8 ; i++) {
for(int j = 0 ; j < (1 << 8) ; j++) {
if(dp[i][j] == inf) continue;
for(int l = 0 ; l < 8 ; l++) {
if(j & (1 << l)) continue;
dp[i + 1][j | (1 << l)] = min(dp[i + 1][j | (1 << l)] , dp[i][j] + tm[i][l]);
}
}
}
ans = min(ans , dp[8][(1 << 8) - 1]);
}
void dfs(int row) {
if(row >= 8) {
solve();
return ;
}
for(int i = 0 ; i < 8 ; i++) {
if(!vis_col[i] && !vis_l[i - row + 8] && !vis_r[i + row]) {
vis_col[i] = true , vis_l[i - row + 8] = true , vis_r[i + row] = true;
aim[row].x = row , aim[row].y = i;
dfs(row + 1);
vis_col[i] = false , vis_l[i - row + 8] = false , vis_r[i + row] = false;
}
}
}
int main() {
int t , Case = 0;
scanf("%d" , &t);
while(t--) {
int cnt = 0;
memset(mmp , 0 , sizeof(mmp));
for(int i = 0 ; i < 8 ; i++) {
scanf("%s" , mmp[i]);
for(int j = 0 ; j < 8 ; j++) if(mmp[i][j] == 'q') node[cnt].x = i , node[cnt++].y = j;
}
ans = inf;
memset(vis_col , false , sizeof(vis_col));
memset(vis_l , false , sizeof(vis_l));
memset(vis_r , false , sizeof(vis_r));
dfs(0);
printf("Case %d: %d\n" , ++Case , ans);
}
return 0;
}
lightoj 1061 - N Queen Again(状压dp)的更多相关文章
- lightoj 1037 - Agent 47(状压dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1037 #include <iostream> #include & ...
- lightoj 1086 - Jogging Trails(状压dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1086 题解:题目就是求欧拉回路然后怎么判断有欧拉回路只要所有点的度数为偶数.那 ...
- lightoj 1057 - Collecting Gold(状压dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1057 题解:看似有点下记忆话搜索但是由于他是能走8个方向的也就是说两点的距离其 ...
- lightoj 1119 - Pimp My Ride(状压dp)
题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1119 题解:状压dp存一下车有没有被搞过的状态就行. #include < ...
- K - Painful Bases 状压dp
Painful Bases LightOJ - 1021 这个题目一开始看,感觉有点像数位dp,但是因为是最多有16进制,因为限制了每一个数字都不同最多就有16个数. 所以可以用状压dp,看网上题解是 ...
- BZOJ 1087: [SCOI2005]互不侵犯King [状压DP]
1087: [SCOI2005]互不侵犯King Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3336 Solved: 1936[Submit][ ...
- nefu1109 游戏争霸赛(状压dp)
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=1109 //我们校赛的一个题,状压dp,还在的人用1表示,被淘汰 ...
- poj3311 TSP经典状压dp(Traveling Saleman Problem)
题目链接:http://poj.org/problem?id=3311 题意:一个人到一些地方送披萨,要求找到一条路径能够遍历每一个城市后返回出发点,并且路径距离最短.最后输出最短距离即可.注意:每一 ...
- [NOIP2016]愤怒的小鸟 D2 T3 状压DP
[NOIP2016]愤怒的小鸟 D2 T3 Description Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0,0)处,每次Kiana可 ...
- 【BZOJ2073】[POI2004]PRZ 状压DP
[BZOJ2073][POI2004]PRZ Description 一只队伍在爬山时碰到了雪崩,他们在逃跑时遇到了一座桥,他们要尽快的过桥. 桥已经很旧了, 所以它不能承受太重的东西. 任何时候队伍 ...
随机推荐
- 【iOS】Signing for "project_name" requires a development team. Select a development team in the project editor
Xcode 8.3.2 运行 GitHub 上下载的代码时报了这个错. 解决方法: 单击工程名 --> Signing --> Team --> 选择对应的Account(如果没有A ...
- Java 获取操作系统相关的内容
package com.hikvision.discsetup.util; import java.lang.reflect.Field; import java.net.InetAddress; i ...
- JavaScript数据结构——栈的实现与应用
在计算机编程中,栈是一种很常见的数据结构,它遵从后进先出(LIFO——Last In First Out)原则,新添加或待删除的元素保存在栈的同一端,称作栈顶,另一端称作栈底.在栈中,新元素总是靠近栈 ...
- 解决Activiti5.22流程图部署在Windows上正常,但在linux上部署后出现中文变方块的问题
总结/朱季谦 楼主最近在做公司的工作流平台,发现一个很无语的事情,Activiti5.22的流程图在Windows环境上部署,是可以正常查看的,但发布到公司的Linux服务器上后,在上面进行流程图在线 ...
- win10 我的电脑下面的六个文件夹的隐藏
第一步 第二步 第三步 修改注册表,要隐藏那个文件夹,ThisPCPolicy 改为 "Hide" 修改我的文档的注册表值,使我的文档文件夹隐藏 <w ...
- 图解SSH隧道功能
SSH能够对SSH客户端与服务器端之间的网络通信提供加密功能,而且SSH的端口转发功能还能将其它TCP端口的网络数据通过SSH连接来转发,并且自动提供相应的加密和解密服务,这一过程也被称为“隧道”(t ...
- 微服务与网关技术(SIA-GateWay)
一.背景 软件架构,总是在不断的演进中... 把时间退回到二十年之前,当时企业级领域研发主要推崇的还是C/S模式,PB.Delphi这样的开发软件是企业应用开发的主流.随着时间的推移,基于浏览器的B/ ...
- Mysql 局域网连接设置——Windows
在公司工作中,会遇到mysql数据库存储于某个人的电脑上,大家要想连接mysql服务,装有mysql服务的电脑就必须开启远程连接. 其实不仅仅是局域网,只要你有数据库所在服务器的公网IP地址都能连上. ...
- RE最全面的正则表达式----字符验证
二.校验字符的表达式汉字:^[一-彪]{0,}$英文和数字:^[A-Za-z0-9]+$ 或 ^[A-Za-z0-9]{4,40}$长度为3-20的所有字符:^.{3,20}$由26个英文字母组成的字 ...
- 使用Qt5+CMake实现图片的区域选择(附源码)
近期研发涉及到了图片的区域选择,找来一些资料一直不能很满意,所以自己实现了一个. 实现步骤如下.源码可以点击ImageAOI获取. 如下资料来自源码的README. ImageAOI (XLabel) ...