P1073 最优贸易 建立分层图 + spfa
P1073 最优贸易:https://www.luogu.org/problemnew/show/P1073
题意:
有n个城市,每个城市对A商品有不同的定价,问从1号城市走到n号城市可以最多赚多少差价。(旅游为主,赚钱为辅,所以买入和卖出只进行一次。
思路:
建一个有三层的图,三层都是相同的普通的城市路线,第一层向第二层连从第i个城市买入商品的花费,第二层向第三层连从第i个城市卖出商品的所得。从1 向 第一层的终点 ,向第三层的终点跑一遍最大路就行了。
#include <algorithm>
#include <iterator>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <iomanip>
#include <bitset>
#include <cctype>
#include <cstdio>
#include <string>
#include <vector>
#include <stack>
#include <cmath>
#include <queue>
#include <list>
#include <map>
#include <set>
#include <cassert> using namespace std;
#define lson (l , mid , rt << 1)
#define rson (mid + 1 , r , rt << 1 | 1)
#define debug(x) cerr << #x << " = " << x << "\n";
#define pb push_back
#define pq priority_queue typedef long long ll;
typedef unsigned long long ull;
//typedef __int128 bll;
typedef pair<ll ,ll > pll;
typedef pair<int ,int > pii;
typedef pair<int,pii> p3; //priority_queue<int> q;//这是一个大根堆q
//priority_queue<int,vector<int>,greater<int> >q;//这是一个小根堆q
#define fi first
#define se second
//#define endl '\n' #define OKC ios::sync_with_stdio(false);cin.tie(0)
#define FT(A,B,C) for(int A=B;A <= C;++A) //用来压行
#define REP(i , j , k) for(int i = j ; i < k ; ++i)
#define max3(a,b,c) max(max(a,b), c);
#define min3(a,b,c) min(min(a,b), c);
//priority_queue<int ,vector<int>, greater<int> >que; const ll oo = 1ll<<;
const ll mos = 0x7FFFFFFF; //
const ll nmos = 0x80000000; //-2147483648
const int inf = 0x3f3f3f3f;
const ll inff = 0x3f3f3f3f3f3f3f3f; //
const int mod = ;
const double esp = 1e-;
const double PI=acos(-1.0);
const double PHI=0.61803399; //黄金分割点
const double tPHI=0.38196601; template<typename T>
inline T read(T&x){
x=;int f=;char ch=getchar();
while (ch<''||ch>'') f|=(ch=='-'),ch=getchar();
while (ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x=f?-x:x;
}
/*-----------------------showtime----------------------*/ const int maxn = 1e5+; vector<pii>mp[maxn*];
int a[maxn];
int n,m;
void addedge(int s,int t){
mp[s].pb(pii(t, ));
mp[s + n].pb(pii(t + n,));
mp[s + * n].pb(pii(t + * n,)); mp[s].pb(pii(t + n, -a[s]));
mp[s + n].pb(pii(t + * n, a[s]));
} int dis[maxn * ];
bool vis[maxn * ]; int spfa(int s,int t){ memset(dis, -inf,sizeof(dis));
dis[s] = ;
queue<int>que; que.push(s);
vis[s] = true;
while(!que.empty()){
int u = que.front(); que.pop();
vis[u] = false;
for(int i=; i<mp[u].size(); i++){
int v = mp[u][i].fi,w = mp[u][i].se;
if(dis[v] < dis[u] + w){
dis[v] = dis[u] + w;
if(vis[v] == false){
vis[v] = true;
que.push(v);
}
}
}
}
return dis[t];
}
int main(){
scanf("%d%d", &n, &m);
int t = * n + ;
for(int i=; i<=n; i++) scanf("%d", &a[i]);
for(int i=; i<=m; i++){
int u,v,c;
scanf("%d%d%d", &u, &v, &c);
if(c == ) {
addedge(u,v);
}
else {
addedge(u,v);
addedge(v,u);
}
} // addedge(3*n, t);
mp[*n].pb(pii(t,));
mp[n].pb(pii(t, ));
printf("%d\n", spfa(, t));
return ;
}
P1073 最优贸易 建立分层图 + spfa的更多相关文章
- P1073 最优贸易 分层图+最长路
洛谷p1073 最优贸易 链接 首先易得暴n2的暴力,暴力枚举就行 显然1e5的数据是会炸的 我们再分析题意,发现一共分为两个个步骤,也可以说是状态,即在一个点买入,在另一个点卖出,我们可以构建一个三 ...
- 洛谷 P1073 最优贸易 最短路+SPFA算法
目录 题面 题目链接 题目描述 输入输出格式 输入格式 输出格式 输入输出样例 输入样例 输出样例 说明 思路 AC代码 题面 题目链接 P1073 最优贸易 题目描述 C国有 $ n $ 个大城市和 ...
- 洛谷 P1073 最优贸易 解题报告
P1073 最优贸易 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有一部分 ...
- Luogu P1073 最优贸易(最短路)
P1073 最优贸易 题意 题目描述 \(C\)国有\(n\)个大城市和\(m\)条道路,每条道路连接这\(n\)个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这\(m\)条道路中有 ...
- Luogu P1073 最优贸易
题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分为双向通行的道路,双 ...
- bzoj 2662: [BeiJing wc2012]冻结【分层图+spfa】
死活想不到分层图emmm 基本想法是建立分层图,就是建k+1层原图,然后相邻两层之间把原图的边在上一层的起点与下一层的终点连起来,边权为val/2,表示免了这条边的边权,然后答案就是第0层的s到k层的 ...
- bzoj 1579: [Usaco2009 Feb]Revamping Trails 道路升级【分层图+spfa】
至死不用dijskstra系列2333,洛谷上T了一个点,开了O2才过 基本想法是建立分层图,就是建k+1层原图,然后相邻两层之间把原图的边在上一层的起点与下一层的终点连起来,边权为0,表示免了这条边 ...
- 洛谷——P1073 最优贸易
P1073 最优贸易 n 个城市间以 m 条有向道路连接, 小 T 从 1 号城市出发, 将要去往 n 号城市.小 T 观察到一款商品 Z 在不同的城市的价格可能不尽相同,小 T 想要在旅行中的某一个 ...
- [BZOJ2963][JLOI2011]飞行路线 分层图+spfa
Description Alice和Bob现在要乘飞机旅行,他们选择了一家相对便宜的航空公司.该航空公司一共在n个城市设有业务,设这些城市分别标记为0到n-1,一共有m种航线,每种航线连接两个城市,并 ...
随机推荐
- ruby镜像报错,compass安装报错
在这几天在电脑上安装compass一直报错,很无语.因为安装的ruby和sass都没有问题,虽然是很久之前安装的. sass # 更新sass gem update sass # 检查sass ...
- Restful API 中的错误处理
简介 随着移动开发和前端开发的崛起,越来越多的 Web 后端应用都倾向于实现 Restful API. Restful API 是一个简单易用的前后端分离方案,它只需要对客户端请求进行处理,然后返回结 ...
- 二进制文件安装安装flannel
二进制文件安装安装flannel overlay网络简介 覆盖网络就是应用层网络,它是面向应用层的,不考虑或很少考虑网络层,物理层的问题. 详细说来,覆盖网络是指建立在另一个网络上的网络.该网络中的结 ...
- poj 2524 Ubiquitous Religions(简单并查集)
对与知道并查集的人来说这题太水了,裸的并查集,如果你要给别人讲述并查集可以使用这个题当做例题,代码中我使用了路径压缩,还是有一定优化作用的. #include <stdio.h> #inc ...
- 非web下的PowerMockito单元测试
一.介绍 PowerMockito 可以用来 Mock 掉 final 方法(变量).静态方法(变量).私有方法(变量).想要使用 PowerMockito Mock掉这些内容,需要在编写的测试类上使 ...
- javascript+jQuery补充
一.jQuery事件绑定 <div class='c1'> <div> <div class='title'>菜单一</div> <div cla ...
- 10分钟了解一致性hash算法
应用场景 当我们的数据表超过500万条或更多时,我们就会考虑到采用分库分表:当我们的系统使用了一台缓存服务器还是不能满足的时候,我们会使用多台缓存服务器,那我们如何去访问背后的库表或缓存服务器呢,我们 ...
- LR有的JMeter也有之三“集合点”
继续上两篇的文章内容和思路进行.(文思如尿崩,谁与我争锋----韩寒)哈哈! 集合点:简单来理解一下,虽然我们的“性能测试”理解为“多用户并发测试”,但真正的并发是不存在的,为了更真实的实现并发这感念 ...
- NOIP 2018旅行题解
从佳木斯回来刷一刷去年没A的题 题目描述 小 Y 是一个爱好旅行的 OIer.她来到 X 国,打算将各个城市都玩一遍. 小Y了解到, X国的 nn 个城市之间有 mm 条双向道路.每条双向道路连接两个 ...
- Spring Boot 整合 JPA 使用多个数据源
介绍 JPA(Java Persistence API)Java 持久化 API,是 Java 持久化的标准规范,Hibernate 是持久化规范的技术实现,而 Spring Data JPA 是在 ...