「POJ 3268」Silver Cow Party
Portal
Portal1: POJ
Portal2: Luogu
Description
One cow from each of N farms \((1 \le N \le 1000)\) conveniently numbered \(1 \cdots N\) is going to attend the big cow party to be held at farm #X \((1 \le X \le N)\). A total of \(M (1 \le M \le 100,000)\) unidirectional (one-way roads connects pairs of farms; road \(i\) requires \(T_i (1 \le Ti \le 100)\) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
寒假到了,\(N\)头牛都要去参加一场在编号为\(X\)(\(1 \le X \le N\))的牛的农场举行的派对(\(1 \le N \le 1000\)),农场之间有\(M\)(\(1 \le M \le 100000\))条有向路,每条路长\(Ti\)(\(1 \le Ti \le 100\))。
每头牛参加完派对后都必须回家,无论是去参加派对还是回家,每头牛都会选择最短路径,求这N头牛的最短路径(一个来回)中最长的一条路径长度。
Input
第一行三个整数\(N\),\(M\),\(X\);
第二行到第\(M + 1\)行:每行有三个整数\(A_i\),\(B_i\),\(T_i\) ,表示有一条从\(A_i\)农场到\(B_i\)农场的道路,长度为\(T_i\)。
Output
一个整数,表示最长的最短路得长度。
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
Solution
题目让我们一些奶牛走到一个点,再从那个点走回来的最短路之和的最大值。那么我们直接用dijkstra
计算两次最短路(走过去,走回来)就可以了,最后判断一下,那头奶牛需要走的路是最长的,然后问题就解决了。
Code
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
const int INF = 0x3f3f3f3f, MAXN = 200005;
struct EDGE {
int nxt, to, val;
} edge[MAXN];
int n, m, S, cnt, U[MAXN], V[MAXN], VAL[MAXN], dis[MAXN], dist[MAXN], head[MAXN];
bool vis[MAXN];
inline void addedge(int u, int v, int val) {//邻接表存图
edge[++cnt].to = v; edge[cnt].val = val; edge[cnt].nxt = head[u]; head[u] = cnt;
}
inline void dijkstra(int S) {//dijkstra最短路
memset(dis, INF, sizeof(dis));
priority_queue< pair<int, int> > Q;
Q.push(make_pair(0, S));
dis[S] = 0;
while (!Q.empty()) {
int u = Q.top().second;
Q.pop();
if (vis[u]) continue;
vis[u] = 1;
for (int i = head[u]; ~i; i = edge[i].nxt) {
int v = edge[i].to;
if (dis[v] > dis[u] + edge[i].val) {
dis[v] = dis[u] + edge[i].val;
Q.push(make_pair(-dis[v], v));
}
}
}
}
int main() {
scanf("%d%d%d", &n, &m, &S);
memset(head, -1, sizeof(head));
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &U[i], &V[i], &VAL[i]);
addedge(U[i], V[i], VAL[i]);//正向建图
}
dijkstra(S);
for (int i = 1; i <= n; i++)
dist[i] = dis[i];//记录走到目标点的路程
cnt = 0;
memset(edge, 0, sizeof(edge));
memset(vis, 0, sizeof(vis));
memset(head, -1, sizeof(head));//注意清空数组
for (int i = 1; i <= m; i++)
addedge(V[i], U[i], VAL[i]);//反向建图
dijkstra(S);
int Max = -INF;
for (int i = 1; i <= n; i++)
Max = max(Max, dis[i] + dist[i]);//判断那个奶牛是走得最多的
printf("%d\n", Max);
return 0;
}
「POJ 3268」Silver Cow Party的更多相关文章
- 【POJ - 3268 】Silver Cow Party (最短路 Dijkstra算法)
Silver Cow Party Descriptions 给出n个点和m条边,接着是m条边,代表从牛a到牛b需要花费c时间,现在所有牛要到牛x那里去参加聚会,并且所有牛参加聚会后还要回来,给你牛x, ...
- POJ 3268:Silver Cow Party 求单点的来回最短路径
Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 15989 Accepted: 7303 ...
- 「POJ 3666」Making the Grade 题解(两种做法)
0前言 感谢yxy童鞋的dp及暴力做法! 1 算法标签 优先队列.dp动态规划+滚动数组优化 2 题目难度 提高/提高+ CF rating:2300 3 题面 「POJ 3666」Making th ...
- 「POJ Challenge」生日礼物
Tag 堆,贪心,链表 Solution 把连续的符号相同的数缩成一个数,去掉两端的非正数,得到一个正负交替的序列,把该序列中所有数的绝对值扔进堆中,用所有正数的和减去一个最小值,这个最小值的求法与「 ...
- 「POJ 1135」Domino Effect(dfs)
BUPT 2017 Summer Training (for 16) #3G 题意 摆好的多米诺牌中有n个关键牌,两个关键牌之间有边代表它们之间有一排多米诺牌.从1号关键牌开始推倒,问最后倒下的牌在哪 ...
- 「POJ - 1003」Hangover
BUPT 2017 summer training (16) #2C 题意 n个卡片可以支撑住的长度是1/2+1/3+1/4+..+1/(n+1)个卡片长度.现在给出需要达到总长度,求最小的n. 题解 ...
- 「POJ - 2318」TOYS (叉乘)
BUPT 2017 summer training (16) #2 A 题意 有一个玩具盒,被n个隔板分开成左到u右n+1个区域,然后给每个玩具的坐标,求每个区域有几个玩具. 题解 依次用叉积判断玩具 ...
- 「POJ 2699」The Maximum Number of Strong Kings
题目链接 戳我 \(Describe\) 一场联赛可以表示成一个完全图,点表示参赛选手,任意两点u, v之间有且仅有一条有向边\((u, v)\)或\((v, u)\),表示\(u\)打败\(v\)或 ...
- 「POJ 2182」 Lost Cows
题目链接 戳这 题目大意 \(N(2 <= N <= 8,000)\)头奶牛有\(1..N\)范围内的独特品牌.对于每头排队的牛,知道排在那头牛之前的并比那头牛的品牌小的奶牛数目.根据这些 ...
随机推荐
- docker服务在Mac上的启动与使用
在mac上打开安装的docker软件就可以启动docker服务了 点击顶部状态栏中鲸鱼图标会弹出操作菜单,显示着服务的状态,如下图所示: 只有在docker服务启动了之后,才可以在终端使用docker ...
- HTTP/1.1与HTTP/2有什么区别?
介绍 超文本传输协议(HTTP)是一种应用协议,自1989年发明以来,它一直是事实上在万维网上进行通信的标准.从1997年发布HTTP / 1.1到最近,对它的修改很少.协议.但是在2015年,重 ...
- HTML5存储--离线存储
离线存储技术 HTML5提出了两大离线存储技术:localstorage与Application Cache,两者各有应用场景:传统还有离线存储技术为Cookie. 经过实践我们认为localstor ...
- 华为路由vlan划分透传和回城路由配置
整整一个星期才整明白,刚开始是路由器ip地址配置在 interface Ethernet0/0/0这个接口能配置但不能用,死在了回城路由上,pc1 ping pc2就是不同,很疑惑,请教了大神,原来没 ...
- AWD攻防工具脚本汇总(一)
最近工作很忙 今天抽空准备下AWD比赛得攻防工具和脚本 以下只是常用 希望下周不被吊锤~~ 后续整理后想抽空写成一个攻击框架汇总放github~~ 这里从各种情景和需求中去总结工具和脚本的使用 情 ...
- C# 委托 (一)—— 委托、 泛型委托与Lambda表达式
C# 委托 (一)—— 委托. 泛型委托与Lambda表达式 2018年08月19日 20:46:47 wnvalentin 阅读数 2992 版权声明:此文乃博主之原创.鄙人才疏,望大侠斧正.此 ...
- Sieve of Eratosthenes时间复杂度的感性证明
上代码. #include<cstdio> #include<cstdlib> #include<cstring> #define reg register con ...
- 微信小程序实现九宫格切图,保存功能!
效果如下图: 代码如下: <view class='sudoku'> <scroll-view scroll-x scroll-y class='canvas-box'> &l ...
- 破解Android设备无法联调的谜题
这篇文章要感谢来自知乎的小伙伴:子非鱼,他最近被一件事情困惑,那就是:Android手机无法联调了.在解决完他的疑问后,突然意识到,其实自己在前一段时间也曾遇到同样的问题,最后居然还怀疑是电脑和手机不 ...
- 百万年薪python之路 -- 异常处理
异常处理 1.错误的分类: 1.语法错误:(这种错误,根本过不了python解释器的语法检测,必须在程序执行前就改正) #语法错误示范一 if #语法错误示范二 def test: pass #语法错 ...