【TencentOS tiny】深度源码分析(4)——消息队列
消息队列
在前一篇文章中【TencentOS tiny学习】源码分析(3)——队列
我们描述了TencentOS tiny的队列实现,同时也点出了TencentOS tiny的队列是依赖于消息队列的,那么我们今天来看看消息队列的实现。
其实消息队列是TencentOS tiny的一个基础组件,作为队列的底层。
所以在tos_config.h
中会用以下宏定义:
#if (TOS_CFG_QUEUE_EN > 0u)
#define TOS_CFG_MSG_EN 1u
#else
#define TOS_CFG_MSG_EN 0u
#endif
系统消息池初始化
在系统初始化(tos_knl_init()
)的时候,系统就会将消息池进行初始化,其中, msgpool_init()
函数就是用来初始化消息池的,该函数的定义位于 tos_msg.c文件中,函数的实现主要是通过一个for
循环,将消息池k_msg_pool[TOS_CFG_MSG_POOL_SIZE]
的成员变量进行初始化,初始化对应的列表节点,并且将它挂载到空闲消息列表上k_msg_freelist
初始化完成示意图:(假设只有3个消息)
__KERNEL__ void msgpool_init(void)
{
uint32_t i;
for (i = 0; i < TOS_CFG_MSG_POOL_SIZE; ++i) {
tos_list_init(&k_msg_pool[i].list);
tos_list_add(&k_msg_pool[i].list, &k_msg_freelist);
}
}
__API__ k_err_t tos_knl_init(void)
{
···
#if (TOS_CFG_MSG_EN) > 0
msgpool_init();
#endif
···
}
消息队列创建
这个函数在队列创建中会被调用,当然他也可以自己作为用户API接口提供给用户使用,而非仅仅是内核API接口。
这个函数的本质上就是初始化消息队列中的消息列表queue_head
。
初始化完成示意图:
__API__ k_err_t tos_msg_queue_create(k_msg_queue_t *msg_queue)
{
TOS_PTR_SANITY_CHECK(msg_queue);
#if TOS_CFG_OBJECT_VERIFY_EN > 0u
knl_object_init(&msg_queue->knl_obj, KNL_OBJ_TYPE_MSG_QUEUE);
#endif
tos_list_init(&msg_queue->queue_head);
return K_ERR_NONE;
}
消息队列销毁
tos_msg_queue_destroy()
函数用于销毁一个消息队列,当消息队列不在使用是可以将其销毁,销毁的本质其实是将消息队列控制块的内容进行清除,首先判断一下消息队列控制块的类型是KNL_OBJ_TYPE_MSG_QUEUE
,这个函数只能销毁队列类型的控制块。然后调用tos_msg_queue_flush()
函数将队列的消息列表的消息全部“清空
”,“清空”的意思是将挂载到队列上的消息释放回消息池(如果消息队列的消息列表存在消息,使用msgpool_free()
函数释放消息)。并且通过tos_list_init()
函数将消息队列的消息列表进行初始化,knl_object_deinit()
函数是为了确保消息队列已经被销毁,此时消息队列控制块的pend_obj
成员变量中的type
属性标识为KNL_OBJ_TYPE_NONE
。
但是有一点要注意,因为队列控制块的RAM是由编译器静态分配的,所以即使是销毁了队列,这个内存也是没办法释放的~
__API__ k_err_t tos_msg_queue_destroy(k_msg_queue_t *msg_queue)
{
TOS_PTR_SANITY_CHECK(msg_queue);
#if TOS_CFG_OBJECT_VERIFY_EN > 0u
if (!knl_object_verify(&msg_queue->knl_obj, KNL_OBJ_TYPE_MSG_QUEUE)) {
return K_ERR_OBJ_INVALID;
}
#endif
tos_msg_queue_flush(msg_queue);
tos_list_init(&msg_queue->queue_head);
#if TOS_CFG_OBJECT_VERIFY_EN > 0u
knl_object_deinit(&msg_queue->knl_obj);
#endif
return K_ERR_NONE;
}
__API__ void tos_msg_queue_flush(k_msg_queue_t *msg_queue)
{
TOS_CPU_CPSR_ALLOC();
k_list_t *curr, *next;
TOS_CPU_INT_DISABLE();
TOS_LIST_FOR_EACH_SAFE(curr, next, &msg_queue->queue_head) {
msgpool_free(TOS_LIST_ENTRY(curr, k_msg_t, list));
}
TOS_CPU_INT_ENABLE();
}
从消息队列获取消息
tos_msg_queue_get()
函数用于从消息队列中获取消息,获取到的消息通过msg_addr
参数返回,获取到消息的大小通过msg_size
参数返回给用户,当获取成功是返回K_ERR_NONE
,否则返回对应的错误代码。
这个从消息队列中获取消息的函数是不会产生阻塞的,如果有消息则获取成功,否则就获取失败,它的实现过程如下:
TOS_CFG_OBJECT_VERIFY_EN
宏定义使能了,就调用knl_object_verify()
函数确保是从消息队列中获取消息,然后通过TOS_LIST_FIRST_ENTRY_OR_NULL
判断一下是消息队列的消息列表否存在消息,如果不存在则返回K_ERR_MSG_QUEUE_EMPTY
表示消息队列是空的,反正将获取成功,获取成功后需要使用msgpool_free()
函数将消息释放回消息池。
__API__ k_err_t tos_msg_queue_get(k_msg_queue_t *msg_queue, void **msg_addr, size_t *msg_size)
{
TOS_CPU_CPSR_ALLOC();
k_msg_t *msg;
#if TOS_CFG_OBJECT_VERIFY_EN > 0u
if (!knl_object_verify(&msg_queue->knl_obj, KNL_OBJ_TYPE_MSG_QUEUE)) {
return K_ERR_OBJ_INVALID;
}
#endif
TOS_CPU_INT_DISABLE();
msg = TOS_LIST_FIRST_ENTRY_OR_NULL(&msg_queue->queue_head, k_msg_t, list);
if (!msg) {
TOS_CPU_INT_ENABLE();
return K_ERR_MSG_QUEUE_EMPTY;
}
*msg_addr = msg->msg_addr;
*msg_size = msg->msg_size;
msgpool_free(msg);
TOS_CPU_INT_ENABLE();
return K_ERR_NONE;
}
向消息队列写入消息
当发送消息时,TencentOS tiny
会从消息池(空闲消息列表)中取出一个空闲消息,挂载到消息队列的消息列表中,可以通过opt
参数选择挂载到消息列表的末尾或者是头部,因此消息队列的写入是支持FIFO
与LIFO
方式的,msg_queue
是要写入消息的消息队列控制块,msg_addr
、msg_size
则是要写入消息的地址与大小。
写入消息的过程非常简单,直接通过msgpool_alloc()
函数从消息池取出一个空闲消息,如果系统不存在空闲的消息,则直接返回错误代码K_ERR_MSG_QUEUE_FULL
表示系统可用的消息已经被使用完。如果取出空闲消息成功则将要写入的消息地址与大小记录到消息池的msg_addr
与 msg_size
成员变量中,然后通过opt
参数选择将消息挂载到消息列表的位置(头部或者是尾部)。
__API__ k_err_t tos_msg_queue_put(k_msg_queue_t *msg_queue, void *msg_addr, size_t msg_size, k_opt_t opt)
{
TOS_CPU_CPSR_ALLOC();
k_msg_t *msg;
#if TOS_CFG_OBJECT_VERIFY_EN > 0u
if (!knl_object_verify(&msg_queue->knl_obj, KNL_OBJ_TYPE_MSG_QUEUE)) {
return K_ERR_OBJ_INVALID;
}
#endif
TOS_CPU_INT_DISABLE();
msg = msgpool_alloc();
if (!msg) {
TOS_CPU_INT_ENABLE();
return K_ERR_MSG_QUEUE_FULL;
}
msg->msg_addr = msg_addr;
msg->msg_size = msg_size;
if (opt & TOS_OPT_MSG_PUT_LIFO) {
tos_list_add(&msg->list, &msg_queue->queue_head);
} else {
tos_list_add_tail(&msg->list, &msg_queue->queue_head);
}
TOS_CPU_INT_ENABLE();
return K_ERR_NONE;
}
实验测试代码
#include "stm32f10x.h"
#include "bsp_usart.h"
#include "tos.h"
k_msg_queue_t test_msg_queue_00;
k_task_t task1;
k_task_t task2;
k_stack_t task_stack1[1024];
k_stack_t task_stack2[1024];
void test_task1(void *Parameter)
{
k_err_t err;
int i = 0;
int msg_received;
size_t msg_size = 0;
while(1)
{
printf("queue pend\r\n");
for (i = 0; i < 3; ++i)
{
err = tos_msg_queue_get(&test_msg_queue_00, (void **)&msg_received, &msg_size);
if (err == K_ERR_NONE)
printf("msg queue get is %d \r\n",msg_received);
if (err == K_ERR_PEND_DESTROY)
{
printf("queue is destroy\r\n");
tos_task_delay(TOS_TIME_FOREVER - 1);
}
}
tos_task_delay(1000);
}
}
void test_task2(void *Parameter)
{
k_err_t err;
int i = 0;
uint32_t msgs[3] = { 1, 2, 3 };
printf("task2 running\r\n");
while(1)
{
for (i = 0; i < 3; ++i)
{
err = tos_msg_queue_put(&test_msg_queue_00, (void *)(msgs[i]), sizeof(uint32_t), TOS_OPT_MSG_PUT_FIFO);
if (err != K_ERR_NONE)
printf("msg queue put fail! code : %d \r\n",err);
}
tos_task_delay(1000);
}
}
/**
* @brief 主函数
* @param 无
* @retval 无
*/
int main(void)
{
k_err_t err;
/*初始化USART 配置模式为 115200 8-N-1,中断接收*/
USART_Config();
printf("Welcome to TencentOS tiny\r\n");
tos_knl_init(); // TOS Tiny kernel initialize
tos_robin_config(TOS_ROBIN_STATE_ENABLED, (k_timeslice_t)500u);
printf("create test_queue_00\r\n");
err = tos_msg_queue_create(&test_msg_queue_00);
if(err != K_ERR_NONE)
printf("TencentOS Create test_msg_queue_00 fail! code : %d \r\n",err);
printf("create task1\r\n");
err = tos_task_create(&task1,
"task1",
test_task1,
NULL,
3,
task_stack1,
1024,
20);
if(err != K_ERR_NONE)
printf("TencentOS Create task1 fail! code : %d \r\n",err);
printf("create task2\r\n");
err = tos_task_create(&task2,
"task2",
test_task2,
NULL,
4,
task_stack2,
1024,
20);
if(err != K_ERR_NONE)
printf("TencentOS Create task2 fail! code : %d \r\n",err);
tos_knl_start(); // Start TOS Tiny
}
现象
喜欢就关注我吧!
相关代码可以在公众号后台回复 “ 19 ” 获取。
更多资料欢迎关注“物联网IoT开发”公众号!
【TencentOS tiny】深度源码分析(4)——消息队列的更多相关文章
- Spring5深度源码分析(三)之AnnotationConfigApplicationContext启动原理分析
代码地址:https://github.com/showkawa/spring-annotation/tree/master/src/main/java/com/brian AnnotationCon ...
- 源码分析RocketMQ消息轨迹
目录 1.发送消息轨迹流程 1.1 DefaultMQProducer构造函数 1.2 SendMessageTraceHookImpl钩子函数 1.3 TraceDispatcher实现原理 2. ...
- 源码分析 Kafka 消息发送流程(文末附流程图)
温馨提示:本文基于 Kafka 2.2.1 版本.本文主要是以源码的手段一步一步探究消息发送流程,如果对源码不感兴趣,可以直接跳到文末查看消息发送流程图与消息发送本地缓存存储结构. 从上文 初识 Ka ...
- 源码分析Kafka 消息拉取流程
目录 1.KafkaConsumer poll 详解 2.Fetcher 类详解 本节重点讨论 Kafka 的消息拉起流程. @(本节目录) 1.KafkaConsumer poll 详解 消息拉起主 ...
- jQuery源码分析(九) 异步队列模块 Deferred 详解
deferred对象就是jQuery的回调函数解决方案,它解决了如何处理耗时操作的问题,比如一些Ajax操作,动画操作等.(P.s:紧跟上一节:https://www.cnblogs.com/grea ...
- Java并发系列[4]----AbstractQueuedSynchronizer源码分析之条件队列
通过前面三篇的分析,我们深入了解了AbstractQueuedSynchronizer的内部结构和一些设计理念,知道了AbstractQueuedSynchronizer内部维护了一个同步状态和两个排 ...
- Python 源码分析:queue 队列模块
起步 queue 模块提供适用于多线程编程的先进先出(FIFO)数据结构.因为它是线程安全的,所以多个线程很轻松地使用同一个实例. 源码分析 先从初始化的函数来看: 从这初始化函数能得到哪些信息呢?首 ...
- 【TencentOS tiny】深度源码分析(2)——调度器
温馨提示:本文不描述与浮点相关的寄存器的内容,如需了解自行查阅(毕竟我自己也不懂) 调度器的基本概念 TencentOS tiny中提供的任务调度器是基于优先级的全抢占式调度,在系统运行过程中,当有比 ...
- 【TencentOS tiny】深度源码分析(1)——task
任务的基本概念 从系统的角度看,任务是竞争系统资源的最小运行单元.TencentOS tiny是一个支持多任务的操作系统,任务可以使用或等待CPU.使用内存空间等系统资源,并独立于其它任务运行,理论上 ...
随机推荐
- git 生成密钥
1.本地安装好git: 2.桌面右键 Git Bash Here 打开git命令行: 3.ssh-keygen -t rsa -C "nideyouxiang@xxx.com" ...
- Python 的整数与 Numpy 的数据溢出
某位 A 同学发了我一张截图,问为何结果中出现了负数? 看了图,我第一感觉就是数据溢出了.数据超出能表示的最大值,就会出现奇奇怪怪的结果. 然后,他继续发了张图,内容是 print(100000*20 ...
- 【LeetCode】230#二叉搜索树中第K小的元素
题目描述 给定一个二叉搜索树,编写一个函数 kthSmallest 来查找其中第 k 个最小的元素. 说明: 你可以假设 k 总是有效的,1 ≤ k ≤ 二叉搜索树元素个数. 示例 1: 输入: ro ...
- Git使用(二)版本库创建及文件修改
一.创建版本库 1.安装完成后,在开始菜单里找到“Git”->“Git Bash”,蹦出一个类似命令行窗口的东西,就说明Git安装成功! 安装完成后,还需要最后一步设置,在命令行输入: $ gi ...
- Nginx 反向代理基本框架
全局配置指令:user nginx; 模块配置段 # 事件驱动模块,提供并发响应功能events{......}# http模块,提供web请求处理,可嵌套其他重要模块http{.......#ser ...
- SpringBoot修改默认端口号 及 上下文
- 【学习笔记】第三章 python3核心技术与实践--Jupyter Notebook
可能你已经知道,Python 在 14 年后的“崛起”,得益于机器学习和数学统计应用的兴起.那为什么 Python 如此适合数学统计和机器学习呢?作为“老司机”的我可以肯定地告诉你,Jupyter N ...
- thymeleaf自定义标签方言处理
项目背景:springboot+thymeleaf thymeleaf两种方式处理自定义标签:AbstractAttributeTagProcessor 和 AbstractElementTagPro ...
- php 循环从数据库分页取数据批量修改数据
//批量修改email重复 public function getEmail() { $this->model = app::get('shop')->model('manage'); / ...
- SpringBoot系列——ElasticSearch
前言 本文记录安装配置ES环境,在SpringBoot项目中使用SpringData-ElasticSearch对ES进行增删改查通用操作 ElasticSearch官网:https://www.el ...