Elasticsearch简介

什么是 Elasticsearch?

Elasticsearch 是一个开源的分布式 RESTful搜索和分析引擎,能够解决越来越多不同的应用场景。

本文内容

本文主要是介绍了ES GEO数据写入和空间检索,ES版本为7.3.1

数据准备

Qgis使用渔网工具,对范围进行切割,得到网格的Geojson

新建索引设置映射

def set_mapping(es,index_name="content_engine",doc_type_name="en",my_mapping={}):
# ignore 404 and 400
es.indices.delete(index=index_name, ignore=[400, 404])
print("delete_index")
# ignore 400 cause by IndexAlreadyExistsException when creating an index
my_mapping = {
"properties": {
"location": {"type": "geo_shape"},
"id": {"type": "long"}
}
}
create_index = es.indices.create(index=index_name)
mapping_index = es.indices.put_mapping(index=index_name, doc_type=doc_type_name, body=my_mapping, include_type_name=True)
print("create_index")
if create_index["acknowledged"] is not True or mapping_index["acknowledged"] is not True:
print("Index creation failed...")

数据插入

使用multiprocessing和elasticsearch.helpers.bulk进行数据写入,每一万条为一组写入,剩下的为一组,然后多线程写入。分别写入4731254条点和面数据。写入时候使用多核,ssd,合适的批量数据可以有效加快写入速度,通过这些手段可以在三分钟左右写入四百多万的点或者面数据。

def mp_worker(features):
count = 0
es = Elasticsearch(hosts=[ip], timeout=5000)
success, _ = bulk(es,features, index=index_name, raise_on_error=True)
count += success
return count
def mp_handler(input_file, index_name, doc_type_name="en"):
with open(input_file, 'rb') as f:
data = json.load(f)
features = data["features"]
del data
act=[]
i=0
count=0
actions = []
for feature in features:
action = {
"_index": index_name,
"_type": doc_type_name,
"_source": {
"id": feature["properties"]["id"],
"location": {
"type": "polygon",
"coordinates": feature["geometry"]["coordinates"]
}
}
}
i=i+1
actions.append(action)
if (i == 9500):
act.append(actions)
count=count+i
i = 0
actions = []
if i!=0:
act.append(actions)
count = count + i
del features
print('read all %s data ' % count)
p = multiprocessing.Pool(4)
i=0
for result in p.imap(mp_worker, act):
i=i+result
print('write all %s data ' % i)

GEO(point)查询距离nkm附近的点和范围选择

from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200"
# 附近nkm 选择
_body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_distance": {
"distance": "9km",
"location": {
"lat": 18.1098857850465471,
"lon": 109.1271036098896730
}
}
}
}
}
}
# 范围选择
# _body={
# "query": {
# "geo_bounding_box": {
# "location": {
# "top_left": {
# "lat": 18.4748659238899933,
# "lon": 109.0007435371629470
# },
# "bottom_right": {
# "lat": 18.1098857850465471,
# "lon": 105.1271036098896730
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="10m", index=_index, timeout="10m")
for resp in scanResp:
print(resp)
endtime = time.time()
print(endtime - starttime)

GEO(shape)范围选择

from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis"
_doc_type = "20190823"
ip = "127.0.0.1:9200"
# envelope format, [[minlon,maxlat],[maxlon,minlat]]
_body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"location": {
"shape": {
"type": "envelope",
"coordinates": [[108.987103609889, 18.474865923889993], [109.003537162947, 18.40988578504]]
},
"relation": "within"
}
}
}
}
}
} es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="1m", index=_index, timeout="1m")
for resp in scanResp:
print(resp)
endtime = time.time()
print(endtime - starttime)

GEO(point)距离聚合

from elasticsearch import Elasticsearch
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200"
# 距离聚合
_body = {
"aggs" : {
"rings_around_amsterdam" : {
"geo_distance" : {
"field" : "location",
"origin" : "18.1098857850465471,109.1271036098896730",
"ranges" : [
{ "to" : 100000 },
{ "from" : 100000, "to" : 300000 },
{ "from" : 300000 }
]
}
}
}
} es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search( body=_body, index=_index)
for i in scanResp['aggregations']['rings_around_amsterdam']['buckets']:
print(i)
endtime = time.time()
print(endtime - starttime)

中心点聚合

_body ={
"aggs" : {
"centroid" : {
"geo_centroid" : {
"field" : "location"
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search( body=_body, index=_index)
print(scanResp['aggregations'])

范围聚合

_body = {
"aggs": {
"viewport": {
"geo_bounds": {
"field": "location" }
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
print(scanResp['aggregations']['viewport'])

geohash聚合

##低精度聚合,precision代表geohash长度
_body = {
"aggregations": {
"large-grid": {
"geohash_grid": {
"field": "location",
"precision": 3
}
}
}
}
# 高精度聚合,范围聚合以及geohash聚合
# _body = {
# "aggregations": {
# "zoomed-in": {
# "filter": {
# "geo_bounding_box": {
# "location": {
# "top_left": "18.4748659238899933,109.0007435371629470",
# "bottom_right": "18.4698857850465471,108.9971036098896730"
# }
# }
# },
# "aggregations": {
# "zoom1": {
# "geohash_grid": {
# "field": "location",
# "precision": 7
# }
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
for i in scanResp['aggregations']['large-grid']['buckets']:
print(i)
#for i in scanResp['aggregations']['zoomed-in']['zoom1']['buckets']:
# print(i)



切片聚合

# 低精度切片聚合,precision代表级别
_body = {
"aggregations": {
"large-grid": {
"geotile_grid": {
"field": "location",
"precision": 8
}
}
}
}
# 高精度切片聚合,范围聚合以切片聚合
# _body={
# "aggregations" : {
# "zoomed-in" : {
# "filter" : {
# "geo_bounding_box" : {
# "location" : {
# "top_left": "18.4748659238899933,109.0007435371629470",
# "bottom_right": "18.4698857850465471,108.9991036098896730"
# }
# }
# },
# "aggregations":{
# "zoom1":{
# "geotile_grid" : {
# "field": "location",
# "precision": 18
# }
# }
# }
# }
# }
# }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
for i in scanResp['aggregations']['large-grid']['buckets']:
print(i)
# for i in scanResp['aggregations']['zoomed-in']['zoom1']['buckets']:
# print(i)



Elasticsearch和PostGIS相同功能对比

PostGIS最近点查询

SELECT  id,geom, ST_DistanceSphere(geom,'SRID=4326;POINT(109.1681036098896730 18.1299957850465471)'::geometry)
FROM h5
ORDER BY geom <->
'SRID=4326;POINT(109.1681036098896730 18.1299957850465471)'::geometry
LIMIT 1

Elasticsearch最近点查询

from elasticsearch import Elasticsearch
import time
starttime = time.time()
_index = "gis_point"
_doc_type = "20190824"
ip = "127.0.0.1:9200" _body={
"sort": [
{
"_geo_distance": {
"unit": "m",
"order": "asc",
"location": [
109.1681036098896730,
18.1299957850465471
],
"distance_type": "arc",
"mode": "min",
"ignore_unmapped": True
}
}
],
"from": 0,
"size": 1,
"query": {
"bool": {
"must": {
"match_all": {}
}
}
} }
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = es.search(body=_body, index=_index)
endtime = time.time()
print(endtime - starttime)

PostGIS范围查询

select id,geom,fid  FROM public."California"
where
ST_Intersects(geom,ST_MakeEnvelope(-117.987103609889,33.40988578504,-117.003537162947,33.494865923889993, 4326))=true
[-117.987103609889, 33.494865923889993], [-117.003537162947, 33.40988578504]

Elasticsearch范围查询

from elasticsearch import Elasticsearch
from elasticsearch.helpers import scan
import time
starttime = time.time()
_index = "gis_california"
ip = "127.0.0.1:9200"
# envelope format, [[minlon,maxlat],[maxlon,minlat]] _body = {
"query": {
"bool": {
"must": {
"match_all": {}
},
"filter": {
"geo_shape": {
"geom": {
"shape": {
"type": "envelope",
"coordinates": [[-117.987103609889, 33.494865923889993], [-117.003537162947, 33.40988578504]]
},
"relation": "INTERSECTS"
}
}
}
}
}
}
es = Elasticsearch(hosts=[ip], timeout=5000)
scanResp = scan(es, query=_body, scroll="1m", index=_index, timeout="1m")
i=0
for resp in scanResp:
i=i+1
a=resp
print(i)
endtime = time.time()
print(endtime - starttime)

两种场景中PostGIS的性能更好



参考资料:

1.Elasticsearch(GEO)空间检索查询

2.Elasticsearch官网

3.PostGIS拆分LineString为segment,point

4.亿级“附近的人”,打通“特殊服务”通道

5.PostGIS教程二十二:最近邻域搜索

Elasticsearch(GEO)数据写入和空间检索的更多相关文章

  1. Elasticsearch Lucene 数据写入原理 | ES 核心篇

    前言 最近 TL 分享了下 <Elasticsearch基础整理>https://www.jianshu.com/p/e8226138485d ,蹭着这个机会.写个小文巩固下,本文主要讲 ...

  2. elasticsearch的数据写入流程及优化

    Elasticsearch 写入流程及优化 一. 集群分片设置:ES一旦创建好索引后,就无法调整分片的设置,而在ES中,一个分片实际上对应一个lucene 索引,而lucene索引的读写会占用很多的系 ...

  3. Elasticsearch(GEO)空间检索查询

    Elasticsearch(GEO)空间检索查询python版本 1.Elasticsearch ES的强大就不用多说了,当你安装上插件,搭建好集群,你就拥有了一个搜索系统. 当然,ES的集群优化和查 ...

  4. 通过Hive将数据写入到ElasticSearch

    我在<使用Hive读取ElasticSearch中的数据>文章中介绍了如何使用Hive读取ElasticSearch中的数据,本文将接着上文继续介绍如何使用Hive将数据写入到Elasti ...

  5. 第三百六十七节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)scrapy写入数据到elasticsearch中

    第三百六十七节,Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)scrapy写入数据到elasticsearch中 前面我们讲到的elasticsearch( ...

  6. 四十六 Python分布式爬虫打造搜索引擎Scrapy精讲—elasticsearch(搜索引擎)scrapy写入数据到elasticsearch中

    前面我们讲到的elasticsearch(搜索引擎)操作,如:增.删.改.查等操作都是用的elasticsearch的语言命令,就像sql命令一样,当然elasticsearch官方也提供了一个pyt ...

  7. elasticsearch备份与恢复4_使用ES-Hadoop将ES中的索引数据写入HDFS中

    背景知识见链接:elasticsearch备份与恢复3_使用ES-Hadoop将HDFS数据写入Elasticsearch中 项目参考<Elasticsearch集成Hadoop最佳实践> ...

  8. Elasticsearch准实时索引实现(数据写入到es分片并存储到文件中的过程)

    溢写到文件系统缓存 当数据写入到ES分片时,会首先写入到内存中,然后通过内存的buffer生成一个segment,并刷到文件系统缓存中,数据可以被检索(注意不是直接刷到磁盘) ES中默认1秒,refr ...

  9. 基于百度地图SDK和Elasticsearch GEO查询的地理围栏分析系统(1)

    本文描述了一个系统,功能是评价和抽象地理围栏(Geo-fencing),以及监控和分析核心地理围栏中业务的表现. 技术栈:Spring-JQuery-百度地图WEB SDK 存储:Hive-Elast ...

随机推荐

  1. SpringBoot第一次案例

    一.Spring Boot 入门 1.Spring Boot 简介 简化Spring应用开发的一个框架: 整个Spring技术栈的一个大整合: J2EE开发的一站式解决方案: 2.微服务 2014,m ...

  2. 【Android - 自定义View】之View的layout过程解析

    layout(布局)的作用是ViewGroup用来确定子元素的位置,在这个过程中会用到两个核心方法: layout() 和 onLayout() .layout()方法用来确定View本身的位置,on ...

  3. 用 python 分析基金!让赚钱赢在起跑线!

    你不理财,财不理你!python 也能帮你理财? 效果预览 累计收益率走势图 基本信息结果 如何使用: python3 + 一些第三方库 import requests import pandas i ...

  4. 小白的springboot之路(三)、集成mybatis与MySQL

    0.前言 mybatis属于半自动的ORM,相比hibernate这种全自动的ORM,兼顾了性能与易用:目前企业项目中,基本都是mybatis的天下:今天就来整合mybatis与MySQL: 1.整合 ...

  5. mybatis中因为不理解$与#而出现的bug

    最近项目中遇到一个bug,正常的流程是这样的:要上传一个应用,首先检查系统中是否已经存在这个应用的更高版本,如果存在,则上传操作将被取消. bug体现为当传入系统中存在的所有应用与新上传的应用的ver ...

  6. Python-Excel 模块哪家强 #华为云·寻找黑马程序员#

    python操作excel 最原始的莫过于两位老牌黄金搭档xlrd xlwt了,针对二者的封装有如下模块: xlutils & xlrd & xlwt 为什么把这三个一起说? 首先,x ...

  7. JQuery之选择集过滤

    JQuery选择集过滤应用如下: 代码实现: <script src="JS/jquery-3.4.1.js"></script> <script&g ...

  8. 爬虫学习(二)--爬取360应用市场app信息

    欢迎加入python学习交流群 667279387 爬虫学习 爬虫学习(一)-爬取电影天堂下载链接 爬虫学习(二)–爬取360应用市场app信息 代码环境:windows10, python 3.5 ...

  9. 数据库Oracle日期函数

    SYSDATE 函数:是一个日期函数,它返回当前数据库服务器的日期和时间. 用日期计算: • 从日期加或者减一个数,结果是一个日期值 • 两个日期相减,得到两个日期之间的天数 ,可以加小时到日期上 S ...

  10. HDU5919 Sequence II(主席树)

    Mr. Frog has an integer sequence of length n, which can be denoted as a1,a2,⋯,ana1,a2,⋯,anThere are ...