结构体在内存中的表示形式是怎么样的?

结构体在内存中和普通变量存储没有太大的区别。

首先我们看看,计算机如何读取普通变量:

  普通变量例如int是占据4个字节,计算机读内存的时候会从起始地址开始读,读4个字节,按照int的规则将二进制转化为整形。所以读取普通变量我们要知道起始地址和数据类型(占据长度,解读方式)。

再看看计算机如何读取结构体变量:

  结构体是自定义变量,是由多个普通变量组成的。我们读取结构体变量,实际上是读取结构体包含的数据成员。例如结构体T包含三个数据成员:char var1,int var2,long var3。计算机如果读取结构体变量 t 的数据成员var1,计算机需要知道结构体变量的地址 &t,已知这个结构体变量占据16个字节,那么从起始地址开始往后16个字节,都存储了结构体变量的数据成员。如果我们再知道数据成员var1相对于结构体起始地址的偏移,我们就可以像读取普通变量一样读取结构体数据成员。

#include<stdio.h>
#pragma pack()
#define offset(type, name) (size_t)(&(((type *)0)->name))
typedef struct Test{
char var1; //1
int var2; //4
long var3; //8
char var4; //1
}Test_t;
/*
64bit:
Test_t:
cxxx iiii //在char后面填充,使得后一个变量int从对齐参数的整数倍
llll llll
cxxx xxxx //结构体总长度必须为对齐参数的整数倍,因此在结构体尾部填充。
32bit:
Test_t:
cxxx iiii
llll cxxx
*/ int main(int argc, char** argv){
Test_t t1;
t1.var1 = 'A';
t1.var2 = 99;
t1.var3 = 999; printf("struct->var1: %ld \n", offset(Test_t, var1));
printf("struct->var2: %ld \n", offset(Test_t, var2));
printf("struct->var3: %ld \n", offset(Test_t, var3));
printf("struct->var4: %ld \n", offset(Test_t, var4)); printf("struct: %ld \n", sizeof(t1)); return 0;
}

针对上述测试代码,我使用了GDB调试工具对程序内存进行查看。想看看结构体在内存中的表现形式是怎样的。

$ gcc -g -o struct_test struct_test.c
$ gdb
(gdb) file struct_test
(gdb) start

编译,打开gdb,在gdb中加载程序,调用main函数,创建结构体变量,此时下一步是对结构体成员赋值。

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAoUAAACFCAYAAAAttoL9AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABglSURBVHhe7dtZmuQ2koXRXoAWq4XmnqoFdSH7hqVNAEkn3f1/OJ8ImwAfIgOVUv3P33///Z+//vqr9OvXr39luSh/t6vPd/V8AACAq7UvhQAAAPhc6aXwlX/zxd+yAQAA3Ce8FN5xSeNiCAAAcA/3Unjn5ezKvcfsaj4XUwAA8I0uuxTqBUyfK2fv3YlrLsoDAAB8sj8uhWdeinTWytwjZ9jdczqy9xneff+rz3/3+wMAwKf66EvhjjNf/4533//q89/9/gAA8KmWLoUjZ3Xz89nGPVXeM+eqKK9xK8vrjGqOx/brjG4uW8/6KKbxqD7KVzr9q3mtyXIAAOC49qXQxqu1jY1nu57PVparVL27eS++cs5ufzZz5DQfPUexah3FVkT91V7ds0TzAQDAMS+9FGouimXxjqp3N+/FV87Zrc3qVnMaO2P/jqj/KecDAAC+7X997OWyWLcni3dUvbv5Efd4tZFObzZzNaexrFd16yJR/4h7shrNaY0XBwAAx/xxKRy8X7zVL+Oqpzuz2qdS9e/mj57L483M9lnNaSzrVd26SNS/M9frOXo+AADga18KZ1zZnF1rzFvPZxXFu6r+3bwXXzlrt19jNp/t59VW/d48jXn5StS/s9dODwAA2ONeCgf7C7fzS3usJ11rrcasKN4x56oz816NzWdsb9Zv89pjc8rmvVpb46nylah/xr28zdm8qvIAAGBdeCkc9Bev90v4zF/M/JIHAAC4T3optMbFTXk1+Dz2c7e8HgAA8F6WLoUAAAD4TFwKAQAAwKUQAAAA/70Uev+d2OA1XOmufd8J7w8AALjC778p9C4bV15AvAugF/sEZ7yuOeMV78+r9sH34jsGAM9z26Vw+KZfCme91ld+Ju/4+dx95qP7v/Lzvds7fr8A4JNxKXyRs14rn0nu7vMf3f+bPt93/64BwKf5cSm0bPFK3uZs3tZ5MZvr1mU1majfrqNaj9Zr34yrmatqvPhg+7NaK+u1Mbv26jRn40r7K1l/N5etZ30U03hUH+Urnf7VvNZkuVepzhDldO3lbV2UBwDk3L8p9P5ArWI2X61XYjOezcxyHV59Nt/Gqufxz6jGW6/EonhUm8l6Rk7z0XOVr/o81fwspvWaj569fGcdxVZE/dVe3bNE86929Pzj2das9AMAaqddCm3c5s6YmcVsPpoT6dR39/Oebb2NVfkslsVXZXNWcxrrPGfOqFvNaeyM/Tui/qecb9fO+c/MAwBq4X9T6K09Xs18tjldr8SiuLfHpPEu7fdmaMzmo9x8tvU2VuWz2DRyyqupVPO9+ODlNNZ5roxaFdV48WE1p7GsV3XrIlH/iHuyGs1pjRe/mrevxs7Ie7QeAJBbuhTq2trp78aiuMaiviOiPVfOMp9XelZjkZXaKetZzWms87yq2tNazWks61XdukjUvzPX6zl6vl3VWa7IAwDWhJdCG1vJj2db761tbMZtLIpHMyfNVbz6KFbVes+2T5+99Uosike1maxnNaexznOmmu/FbD7by6ut+r15GvPylah/Z6+VnvHs1U9n5O1aY17v2XmvBgDw//69FM4/MO0fmjamdRq3efts816N5jTu9XkxzWmNjUV03hTVeTHt8Z69nKW1tsbmVvOVrD/LqajGxqLnzKxTXt1g89pjc8rmvVpb46nylah/xr28zdm88vI7ParKD7Nm1tkezUfxbkzjmtMYAOCn339T+O68P/Cv+CXALxYAAPCJPuZSOMy/DZi8ml1XzMR30O+kx+sBAODVPupSCAAAgD3ppfCVf4vB35gAAADcJ7wU3nFJ42IIAABwD/dSeOfljIshAADA6112KRwz5hx9rpyxNwAAANb8cSk881Kms1bmXnkxvPrSefV8AACAK3ApPNnV8wEAAK6wdCkcOaubn8827qnykTlbdXJeTRa3axuzOQAAgKdrXwptvFrb2Hi26/lsZbmI19ONefGoV+NRjY0BAAA83UsvhZqLYlk80+3p1I0ar67b68UBAACebPtfH3u5LNbtyeKV0aeiGi8+aJ9Xl/VOnRoAAICn+eNSOOxciKqe7sxqnxUr821892ydGgAAgKdpXwpnXNmcXWvMW89nFcUrXl8Vy56r3kg0EwAA4MncS+FgLzSdS9JYT7rWWo1ZUbxjzlVe3RDlNe49K+2zOjUAAABPEl4KB73YeJecMy8+XKIAAADuk14KrXFxU14NAAAA3s/SpRAAAACfiUshAAAAuBQCAADgv5dC+98KKq8J3+kp34knfy/Peo+iGdX8KD/jVlaT5SatuVpnz1efCZ8l+/50vn9Xmvt757C5SWuAjt+XwhmInhG7+wfwVfs/5XXeeYaMnuvIGaPXWM3P8l69Wp13pbFXdJ7oHDMX5YFM5/tz5/fL21djd50Ln+ePf33Ml2vP3e/bu3xuZ5zzyte6O9vrOzLL9lbzd/LqaP9Zju75qnNG3n3/q89/9/tTeer5vHNp7OnvK94Hl8KT3P2+vcvndsY5r3ytu7O9vp1Zs8f2VvN38pWd/lG3s9d0pHc42n/Uu+9/9fnvfn8qTz2fdy6NPf19xftYuhSOnIriSvP22Zo5W2Njdh3VRfFqHcUys87rmTFbM9denc3ZvJfTZ62Lnq2Z82qiuOayOo17+RW7vdnemotqMl69xuxcfdYa79lb21gnr7TOY2u6/VU+orO9GVHcyvI6o5rjsf06o5vL1rM+imk8qo/ylU7/al5rstyKo/2VaG62r8Y7dVF+lc44eza+V/tS6MU1Vj2Pf0Y13tqLZTO8Wl3PWLc/ikWy2RqLaqJ677laR7OymqinE5vx3ZmrdmZ0zpbFK15ftmdVn/V6sTPmzXg1y1ufpZq7m/fiK6+h25/NHDnNR89RrFpHsRVRf7VX9yzR/A7be2RWpJoZ5Uc8O5/XF83qyPby1kDXSy+FM2Zz9jmKeTWeUdeZZ2m+u9fU2S+b2enXeDQ768liVT6LRfGV/hVHZ4z+aMbubK8vinVqq7WNdWZaWb7qHTo1q46ceYjyXnzl/N3arG41p7Ez9u+I+u8+327fqmqfKO/FNVblV3T7dufjuy1dCj2az541ZnP2OYp5NWrkZ01nnqX5qtbq7JfNHDmPVzOfvZyNaz6LVfksFsVX+lfszhh9szeacWR2N5bFPTPv9XjPWUxdnd9x1ZlG3OPVRjq92czVnMayXtWti0T9I+7JajSnNV68stu3qtpn5XVpbDx7tL5jpWdnPnDobwqV5r1nrz/qiWJezdSpzfqnUdOpszr7ZXOrPatZuvZmVbGdniq+0r9iZ4btiWbsns/ri2KdPWxNNf/u/Fmqmbv5V50122c1p7GsV3XrIlH/zlyvZ/d8R19XV7VPlK9e6xnnz2ZU+wNdb/ffFOpa2dmdeZ6ot2L7vBnZ3KrePtv6zlpjVf1KLIpXsWhWZafP7hvNsHWaq1S9K7N3+rP86trGOvUzHuU6qt7dvBdfOWe3X2M2n+3n1Vb93jyNeflK1L+z10rPePbqlc2v9nesniGLa6zKV1bne2tvBmD9uBTOL0705dG81tiY9+zlLK3VGhvXnNKc96y0T2W5zOzz5s+Y0nxUF+Wj52g9Y7bPmjmvxuY0343ZnI1XdObODO3J+rNcJerV+HzO6qIaL6ay/Mx18l5NlpuqfERnezOO5r0am8/Y3qzf5rXH5pTNe7W2xlPlK1H/jHt5m7N55eWrnmnWebWd/ojOnbr5nZjGO2zvFNVoXHM2Dlh//E3hVd7lC/mpPzj8gQDgk/FnHHDcSy6F44d18vJP8PTzHfEO7z+Aa+jPv8freTef8jqAu73sbwoBAADwXFwKAQAAwKUQ13n6v9K5+3zf/q+8+H4gw/sPvN6PS+H4IbS0+G5PPBN8T/+c7j7fO36Pz/z54/uBDO8/cI/fl0Lvh/BpP5jjPPxh8R70c3ri53b3+Z72fljee3Lm+/QOr9+L4zV4/4F7LF8Kr/5h5Q+Dz2A/x6d9rnef7x2+51eeMZp99fvSnb97jqvPXzm6P+//MZ/y/uN7pZdCD1/azzbe/6Ofgdf/pM/17vM96b3IXHXObO7V701n/pEzXH3+ytH9ef+P+YT3H9/tj/+mUJNq5KysJovbtY3ZXNRjc926rMajtV7fjNmaufbqbM7Lz5pq7fVHcUvrtNbGV0Rz5z+jPTSneRtXnX7Ly82Y19+J6VrNehXFB69X1zbXyXfNXuXltMfL2bXlxbVnqmqqvNZkOSvK2X6t6+Tm2sbmc7RWUU7jXr7S6V/Na02Ws6Kc7de6bi5bz/oopvGoPspXOv2rea3JcoD6cSkcqi9MlLNxr87OjmpsTEV5O3vGvGdvXbHzvf6sJqr3nr31jEU9VX+376ho3ojbXHWOKO89V/1ZbMZtTtfVrKy3Ex+yGePZrudzJ1/x6ruxaeQ0v9o/RPlqVnevaP4U5Y/O79SOtca8fLaOYiui/mqv7lmi+VOUP2P+yGk+eo5i1TqKrYj6q726Z4nmA9Mfl8Ip+vJ0vlSjZvcLWdVE+Wo/m6/2sar53lpV/Z1Z2Xw16rJ50fMZonlevDpHlPeeq/4sFsVtTNfRnGEnl/UMXl5jVb7S7c9mdvaraqJ8dZbO3sOZ+3tW+m0s2+Po/l1RvxfX2FnnW9nfk9Wt5jR2xv4dUf9TzofPF14Kh+qLaI3czK/2TlVNlO/sN9aTxju683Wtuv2TxjXvxSfttbW6jp7PEM3z4tU5orz3PP7pmXW2vhO3MV2vzFFn9mmsyle6/dnMzn5VTZQfcU9Wozmt8eJTltfZUd1K3Mai3iHLqW5dJOofcU9Wozmt8eJTltfZUV3V78UHL6exrFd16yJR/4h7shrNaY0XB6b0/2jSjXnxlV5V1XT3t7HO3plqvreuchrLeqeV+dk6ej4qm+XlqnNEee/Z67eyGi8XxVbnTLu5wctrrMpXuv3ZzGq/znmimk6v5fVkc1b3WJnfqc32z3KqWxeJ+nfmej3ZnNU9zpxfzcp6VbcuEvXvzPV6jp4Pn+/QpTB7rnoj0cwsFsVtbKyV5iq2x+vPZnbqx1ppbuZtbNKc12/z3vNc21hX1uflNLaS956rfm+tOv0zFs2x8WptZfXj2a7ncydfqeZp3Mamas8qP2hN9OzFqrwXs3mvfjo639aOtRfTtdWp11g1zxP17+y12uPVT6+eP9ZVvzdPY16+EvXv7LXTA/y4FFq2eIryGveelfZZXo322nwnpjmtsbGIzrF9M6Y0H9XZnK41pj2TrdW66DnLjWdv3ZX1zJlaU8WiuK6jZ41Ndq28Hi8247rWuEfzWh/xemdc85rr5DtmrzdLcxqvclpjY5FshspyNq+8fFY/zB7l1Q1R3vbq2rK900qNl+uI+mfcy9uczSsvn9UPs0d5dYPNa4/NKZv3am2Np8pXov4Z9/I2Z/OqyuO7pf9N4SfxfghWfjCu/iE6er67Pf2sZ51vd87R/av+b3n/r/L083063n/gGb7mUjiMP3iUV+PZ6dmh+1y9F9bc+ZlU34mVvMfrwefwPnPl9eA83nuuvB7gLl91KQQAAICPSyEAAAC4FAIAAIBLIQAAAP7BpRAAAABcCgEAAMClEAAAAP/gUggAAAAuhQAAAOBSCAAAgH9wKQQAAACXQgAAAHApBAAAwD+4FAIAAIBLIQAAALgUAgAA4B9cCgEAAMClEHhXv379cuMAzsXPGr4Fl0LgDfFLCngtfubwDf69FI4ve8Rrwnd6ynfiqd/LV70/T339Xe9+/iN2vyOzz/Jq8ed3zL5vU1ajOa3x4sBR2ffP5iatOcvvS+EMRM+IXfkBdbxq/6e8zjvPkHnV2Z76+ivz/XnX8x+lr3v1PfDqoxkjns1/ev4ob763n8aqfBYDjtr5fl7lj399zJd+z93v27t8bmec85u/o5/w2r/x8/Ne85H3IerVeLXnE/NnGHOr2Tbv1UczqtlHXDl7uHp+5ej+n/r+ePtq7JXn4lJ4krvft3f53M445zd/R5/62se5PFGtF39n9nVPmtf6KNYV9VYzn54/as5fPYdXH82oZh9x5ezh6vmVo/u/+/sz5nt7VLGrz6WWLoUjp6K40rx9tmbO1tiYXUd1UbxaR7HMrPN6ZszWzLVXZ3M27+X0WeuiZ2vmvJoorrmsTuNefsWRXo89l4rqNN7NVXUdWV8028bt2qvz8rbG5rqO9Gais9m4XXt1mq/WHV6txuxMfba8+KxX75T3anby3rMV5Y72V0bflOWimko2o5vL1rM+imk8qo/ylU7/al5rstyKqn9lttbNvpX+Xe1LoRfXWPU8/hnVeGsvls3wanU9Y93+KBbJZmssqonqvedqHc3KaqKeTmzGd2euOmOGpTO9Z7tndIYs3p2R6e7r1Y2YxqNnb+3FvJqO3b5M9/waj5531hWvPpuZzd/NDU/Ne3GNVXm79uqnKpflhyrvsT3RjJ3Zg9fXjU0jp/noOYpV6yi2Iuqv9uqeJZrfYXuvnHVkduWll8IZszn7HMW8Gs+o68yzNN/da+rsl83s9Gs8mp31ZLEqn8Wi+Er/ijNmWDozetZYdIaVeFSb6fSMmtX9bK5aWyPviWq9+FmivbN9bW5n7Ynqs5gXn7Lc8K55L66x1bxXn8WHbJ7Kch2jP5qxO7vbl9Wt5jR2xv4dUf/d59vt81x91srSpdCj+exZYzZnn6OYV6NGftZ05lmar2qtzn7ZzJHzeDXz2cvZuOazWJXPYlF8pX/FGTMsnZk9z7XG1Uo8qs1kPSM38zv7zf6d3hVnzlJ69p3XMPujuhmv5ni8niiWza/2ftf8iHuO5odZM+t0ncVXajtG3+w9e/Yw509RjRcfVnMay3pVty4S9Y+4J6vRnNZ48cpun7Uy56w9rUN/U6g07z17/VFPFPNqpk5t1j+Nmk6d1dkvm1vtWc3StTeriu30VPGV/hVnzLB0pvds94zOsBKPaiudWav7VWep8ivOnDXZmd4e2b6dM82aTq3VPc+IZfOrvd81f3SutbqPF+/GOmzfyjl2rZ5/NaexrFd16yJR/85cr2f3fEdf15DNOPOslbf7bwp1rezszjxP1Fuxfd6MbG5Vb59tfWetsap+JRbFq1g0qxLN3Z03ROeazzama7USj2or1azxvLPf7Ov2ezUd0ezdeYP2RrOq+bMv6p81XrxDe705VT6LT++a9+Iaq/LWyj5RfHXPjPaN52iOrdNcxqutYjaf7efVVv3ePI15+UrUv7PXSs949uqVzXv10ZwqZvNe/Vl+XArHRpMWeXmtsTHv2ctZWqs1Nq45pTnvWWmfynKZ2efNnzGl+aguykfP0XrGbJ81c16NzWm+G7M5G6/oTG+GXXfZeavPulZeLout8Pp0nvestG/WdGPRjIr2ejPsepXO9J6V9s2a3diKbP8Zn89RnY3NuPVOea9mNe/V2Dq7VlnfzNvYCp0b7VHlIrNHeXWDzWuPzSmb92ptjafKV6L+GffyNmfzystXPdOsi2qjnPapqEbjZ/vjbwqvcvULOcu7nHPVp74u9Q2vUZ35er1Zr34/7/z8nvD68Vx8F/AtXnIpHD9Qk5d/gqef74h3eP+P+uTX9ir6PXn1+/mEz+/O1w98K/tzZ3k9uM7L/qYQAAAAz8WlEDjB0f9Vy/8qBgDcjUshcJKjlzouhQCAO/24FM6/rZi00OYmrcF3ePrnftf5OvtmNfw8AQDu9PtS6P1C0hi/sDC+A5OXv9ud5+vuGdXdcWYAABSXQvzQ+Zyf/l148vnG2fhZAgA8EZdC/ND5nJ/+Xdg53+jxeLW75ryz5wIAcIb0/2iiv7zmL8lJ6/D+7OebfcZZzmNn2nVUF8Xt2orid9Pz21zXU18bAOD9hZdC+8unWuMzdD7Xnc9+9fvk7TFiGvdqsvjdOmcHAOAu7qWw+wuLX2yfp/OZ7nzutiebMXJevrtvt07NPS2vdteVswEAOOqPS+HKLyt+sX2ezme6+7nPvqh/xLOaqM/q1r2SPdMTzwgA+G4/LoXZLyovxy+2z9P5THc/99nX+S51aiLdulc68noAAHiF35fC6peWzfML7TNln3kWH7HOd6IzM5rVmT90617pyOsBAOAVflwKPVocxfFZos9YP39bY9eRrEZneM9K+6Zu3at55/FiHav1AAB0uf9HEwDPxKUQAHAVLoXAG+FSCAC4CpdCAAAA5JfCV/6tBH8DAgAAcJ/wUnjHJe3Ve3IRBQAA+D/upfDOy9Kr9vb2GTFl86rKX6Fzro47zg4AAJ7sr//8L4tglCBKCvCqAAAAAElFTkSuQmCC" alt="进入main函数">

我们在赋值前查看一下此时结构体变量t1在内存的表现是怎样的。

(gdb) print &t1 	#打印结构体变量t1的地址
(gdb) x/24xb &t1 #读取24次内存,每次读一个字节,以16进制的形式打印

使用print打印了结构体变量t1的地址,通过x/<n/f/u> <addr>的形式查看程序的内存,详情见以下博文

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnoAAABnCAYAAACXfe9gAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABMSSURBVHhe7ZtRkiU5qkTfAnqxs9De0zzTBzUUCTgEoauIm/5xbBTugJycj5RVVf/ff/7zn//+888/hBBCCCHky+BDjxBCCCHkS+FDjxBCCCHkS0kfev/++6+r7+CTdxFCCCGE/AbCh96Jhxcfe4QQQggh9+E+9E4+uE7f/Q33n9yBEEIIIc9h20NPP1r0GXHH3Vfp5Lwbfe/VDJL/1A6EEEIIeRY/Hnp3PhL0rM7cNz9Urmav/qwq89/88yOEEELIffChdzNXs1d/VpX5b/75EUIIIeQ+Wg+95Vmqvpyt7oF8i57pzRfN1sh3pFkvq9O65yOkPurTcwWvbpF5hBBCCPk9lB96VkffVltn+y1nS+ZFVOZXa6wmuvU6/Qg9X87eLE+zVGoIIYQQ8v189KGnvUjL9IzK/MrcTqaqhpAe3RvNqcy/koEQQggh38flv7r1vEyr9mR6RmV+ZW4nU1VD6B45R3Mq869kIIQQQsj38eOht/AeCujxgHqqM9E9EZVZldlRTWV+pCF0zzpnMyrzr2QghBBCyPdRfuiJrrGe/daa9y1nTaQjKvMrs6Oa6jytVe5b2LpsRmV+pBNCCCHkd+E+9BbZAyPS1regv3Wt1iyRXiGbL5pG+6imqlnP6hl2XjYj8kTX2BpCCCGE/B7Ch95CPxS8R8OdD4npLD5qCCGEEEL+Jn3oWdZjSuPVnOCJmQghhBBCTtN66BFCCCGEkPfw6oce/wTvf/BnQQghhBCL+9B7w6OBD5uf8GdCCCGEEM1fD731UNDoQs3pB4W9X2e26LrfwHTnqz836bN4tb+V7GdjPUHX6DqrE0IIIR5/Hnr6l4ec7S8U+SVj9U/j5ULnbwHtNNl58rPz6qMZS8/mP92/gjdPa8i33149IYQQYmk99ISTv2TQ3buzTed/ov/KHV7PJGvUq3V05xP9q6C7LNbr9hNCCCGL9KEXceUXzOrx8GozUM+VmR2m86/uLH36f6NZkZ7h9VyZI1zN9nT/TrK7rOfVfjIrIYSQdxL+Gz1dZDn5C2aSTXYTkK9rMq/CtH9R7b06O9PkXtH02eLpUq95k+/VdH1N5nteVSOEEEI0fz30hPULpPuL6FOguyPf07WG/EzrMOlfvYLnC1fu8Hqspr+zO656i6f6nq415GvN0zWdWVYjhBBCNOFDT/+v5covmNXj4dVmoJ7I93StVbNU6yKu9K8e6dP/G82K9AyvJ9Ky+ejut/qerjXkWzr3RHo2nxBCCFl87KF3F+juLLNHVqM9XePpVT7Rf+UOryfSsvno7rf6S/eo+h6eH/V0agkhhBAh/Y8xOr90Pkl2/52ZvZ7p7rv7r86v7rq07A50/1v9HXOrWqSjOwkhhJBf/dDTGvI9zfMR037EZCbKVsmO7n+r7+lam/qZJqB5hBBCiOWvv7pdvzw0utDzvZpP4d2Ncmnf1ljP+hrkI6b9EXfMjLJpXc5RndVEt7zJ92ru9qXG04WslxBCCLGk/0bv6fAX3v/gz4IQQgghllc/9J7C+nlleD2EEEIIIbtxH3qEEEIIIeT9pA+9T/5pFP/kixBCCCHkXsKH3omH16fv5OOSEEIIId/M4/6N3qfu9u5Zmsb6GuTvoJKrwonshBBCCPk82x56+lGiz4g77q5g7/HujbIsvZOzW++h+6/OkhzTLIQQQgh5Bz8eenc+AvSsztxPPETsHd6dUY6ldzN26y26P5tVuWeahRBCCCHv4Fc+9Lz5Xa2bsVtv0f3ZrMo90yyEEEIIeQeth97yLFVfzlb3QL6HzJVefbZEusXW6W/PE/S39j29iu63nugWr26ReYQQQgj5HsoPPaujb6uts/2WsyXzMirzq7O9OjQ/89c36s/Q/XL2ZniapVJDCCGEkPfz0Yee9iIt0yus3qy/MtursVo0Z+mV/kjzkDpdH/VWZlbvJYQQQsi7ufxXt56XadWeTK+werN+NDvLFOHVaU30iuah6+Qc9VZmVu8lhBBCyLv58dBbeA8B9DhAPdWZ6B7E6o9moNmdu7M7PK+qeei6aL5QmVm9lxBCCCHvpvzQE11jPfutNe9bzppIr4DmZ7Pvrrf++s78DG/WFQ/phBBCCPku3IfeIntARNr6FvS3rtWaJdIr6Lly1vP02UP3aCp1Wrc1us/WdZC+ypzIE11jawghhBDyPYQPvYV+CHiPgjsfCrsfHXzUEEIIIeS3kT70LOuxpPFqCCGEEELIM2g99AghhBBCyHvgQ48QQggh5EvhQ48QQggh5Ev58dC7+u/v9L/d03i1v5XsZ2M9QdfoOqvfxdvnT5nmi/pFt9i609yVK5rx1L2FaT7UP52/m2k+1D+dv5tpPtQ/nb+baT7UP52/m2k+1D+df5W/Hno6QDeMVx/NWHo2/+n+Fbx5WkO+/fbqp7x9/pRpvqz/iftapvsLq9frv2v+Lqb5UP90/m6m+VD/dP5upvlQ/3T+bqb5UP90/m6m+VD/dP6EPw89FKxL1IuWfbp/FXSXxXrd/i5vnz9lmg/1P2lXj+n+mtVne++cv4NpPtQ/nb+baT7UP52/m2k+1D+dv5tpPtQ/nb+baT7UP50/5ehDz+Pp/p1kd1nPq420bG5Edf5Vds+fMs2H+p+0q8d0f0F6bO9d83cxzYf6p/N3M82H+qfzdzPNh/qn83czzYf6p/N3M82H+qfzp5Qfeuss6G/xNZ4u9Zo3+V5N19dkvud1tGx2BJovc0XTZ42t07r+jrRToHzrLOhvr9bTpF7QdU/Ay6Q1m12fdY139r4j7RQo3zoL+tur9TTkn6aSX9DfXq2nIf80lfyC/vZqPQ35p6nkF/S3V+tpyD9NJb+gv71aT0P+blp/ooeCC1e9xVN9T9ca8rXm6ZrOLKtdpTJff++oP8l0H9RfqT8Jym+/UX3Wm2mnqOTT35nnacg/TSVftg/qR/5pKvmyfVA/8k9TyZftg/qRf5pKvmwf1I/83bT/6nZpWUAU/q2+p2sN+ZbOPZGeze9Snb+0K1mu9HySar6ldWqtpkH+J+nsVKlF35F2imq+pXVqvXOmnaKzU6fWO2faKTo7dWq9c6adorNTp9Y7Z9opOjt1ar1zpu2CDz1D5C/do+p7eH7U06m9QnX+0q5kudLzSar5ltaptZoG+Z+ks1Ome4jv9VjtFNV8S+vUeudMO0Vnp06td860U3R26tR650w7RWenTq13zrRTdHbq1HrnTNsFH3qGyN8xt6pFOrqzQyfflSxXej5JNd/SOrXeOdNO0dmpktvWVOefoppvaZ1a75xpp+js1Kn1zpl2is5OnVrvnGmn6OzUqfXOmXaKzk6dWu+cabv489BbdIJFIVH4t/qerrWpn2kCmid6NiMDze/46NvrPw3KN/HR9xPI8lsN5Z/2nwDl2+2fZpp/6p9mmn/qn2aaf+qfZpp/6u/kr4feYgWIQoou56jOaqJb3uR7NXf7UuPpQta7QD4i6te6nLM6z9O+5z2BKJ/W5YzqIi/yn0CUT+tyzuqiGk97ElE+rcsZ1Xkg/zRRPq3LGdV5IP80UT6tyxnVeSD/NFE+rcsZ1Xkg/zRRPq3LGdV5IH8XPx56hBBCCCHkO+BDjxBCCCHkS+FDjxBCCCHkS+FDjxBCCCHkS+FDjxBCCCHkS/nx0Lv6X4VIn8Wr/a1kPxvrCVmN9u5iMltni2Zk3hOY5qv2P/VnMN1fiGbcNX8X03yofzp/N9N8qH86fzfTfKh/On8303yofzp/N9N8qH86/yp/PfR0gG4Yrz6asfRs/tP9K3jztDb17wDdl1HJN5n/Cab5qv3LuzJ/N9X8iGi/u+bvYpoP9U/n72aaD/VP5+9mmg/1T+fvZpoP9U/n72aaD/VP50/489BDwbpEvWjZp/tXQXdZrNft7zKdj/qn83czzdfpX3pn9ifo5Ed4+905fwfTfKh/On8303yofzp/N9N8qH86fzfTfKh/On8303yofzp/ytGHnsfT/TvJ7rKeVxtp2dyI6vwOun/H/DuZ5qv2i9aZ/Qmq+RHRfnfN38U0H+qfzt/NNB/qn87fzTQf6p/O3800H+qfzt/NNB/qn86fUn7orbOgv8XXeLrUa97kezVdX5P5kaf1rCabHeH12Pv0bH32sJ5Xm/V/GpRvnQX97dVGGqo/Ccq/zoL+Fl807+x9R9opUL51FvS3V+tpyD9NJb+gv71aT0P+aSr5Bf3t1Xoa8k9TyS/ob6/W05B/mkp+QX97tZ6G/N20/kQPBReueoun+p6uNeRrzdM1mV/pv4I302r6O8qw9MqsSDtFJZ/+zrxIy/pPc0f+zEf1p6nk09+Z52nIP00lX7YP6kf+aSr5sn1QP/JPU8mX7YP6kX+aSr5sH9SP/N20/+p2aVlAFP6tvqdrDfmWzj0Cum+CNy/SKnfbmur8U1TzLa1T652979N0dqrUou9IO0U139I6td45007R2alT650z7RSdnTq13jnTTtHZqVPrnTPtFJ2dOrXeOdN2wYeeIfKX7lH1PTw/6unUXqE6f2nVe3Vddf4pqvmW1qnV5wjdcwovR6Rluof4Xo/VTlHNt7ROrXfOtFN0durUeudMO0Vnp06td860U3R26tR650w7RWenTq13zrRd8KFniPwdc6tapKM7O3TydWq9c6adorNTp9ZqQuadoLNTJbutqc4/RTXf0jq13jnTTtHZqVPrnTPtFJ2dOrXeOdNO0dmpU+udM+0UnZ06td4503bx56G36ASLQqLwb/U9XWtTP9MiPdKiGQjdh+6zPqq33179aVC+qa9B/gl279fpPwHKt9s/zTT/1D/NNP/UP800/9Q/zTT/1N/JXw+9xQoQhRRdzlGd1US3vMn3au72pcbTF9X+yKsQ9WtdzrZO69azNZ73BKJ8WpczqvPQvaj2BFEmrcs5q4tqPO1JRPm0LmdU54H800T5tC5nVOeB/NNE+bQuZ1TngfzTRPm0LmdU54H800T5tC5nVOeB/F38eOgRQgghhJDvgA89QgghhJAvhQ89QgghhJAvhQ89QgghhJAvhQ89QgghhJAv5cdD7+p/FSJ9Fq/2t4J+NsjXNZ53B1fnS58lqrP6U/hUvqf+DJ7+/89uuD/3v7K/9Fm82iczzY36p/N3M82H+qfzr/LXQ08H6Ibx6qMZS8/mP92/gjdPa8i33179lMl8r95qk/mf4FP51uxv3v+p+yE+tT/yT6EzTfKh/ZB/Cp2pm8+rj2YsvTv/E+hMV/Kh/un83Uzzof7p/Al/HnooWJeoFy37dP8qO7J42lXunm97d+ef8sl8a+6Tdl/ctb/uedqOGZ/aH/mnQFmroP2QfwqUtUvU+637o/7p/N1M86H+6fwpRx96Hk/370Tf5d3b8bXm6Yjq/Cq29+75d/OpfDLzSbsv7tr/aXtV+dT+T/35cP979hei3m/dH/VP5+9mmg/1T+dPKT/01lnQ3+JrPF3qNW/yvZqur4n6vbP3nWmejkDzZa5o+mzx9Kp2CpRvnQX9Lb6tsZ743vkJVPIK+tvzrRfVWP8kUV591rn12frWq/in8fJozebWZ+tbr+KfxsujNZtbny2eLvUaW3MSL4/WbG59trWehvzTVPIL+tur9TTk76b1J3oouHDVWzzV93StIV9rni5EflW7SmW+/s7ursyKtFNU8unvzIu0rP80d+Xv6FHtCSr59HeUHe2E/FN4uaymv6M90H7IP4WXy2r6O9vjqncSL5fV9HfmeRryT1PJl+2D+pG/m/Zf3S4tC4jCv9X3dK0h39Kd153fpTp/adm9kVedf4pqvqV1ar2z932azk5Z9sirzj9FNd/SstxoJ+SfItrV07Id0H7IP0W0q6dlO6D9kH+KaFdP69R650w7RWenTq13zrRd8KFniPyle1R9D+17tR1/SnX+0rJ7I686/xTVfEvLdAvyF3rOKbwckZZljjzps3i1J/CyRFqWG+2E/FNEu3patgPaD/mniHb1tGwHtB/yTxHt6mmdWu+caafo7NSp9c6Ztgs+9AyRv2Ou1qb+lOr8pWX3Rl51/imq+ZZ2xy7d+t1Ud1palj3ysp4nEO3qadkuaE/knyLa1dOyHdB+yD9FtKunZTug/ZB/imhXT+vUeudMO0Vnp06td860Xfx56C06waKQKPxbfU/X2m7ffnv1okceAs1HfqYvKv0nQfkyH9VbMu8U2X5Wi/J39Kj2FGg/5Ge6gPyToP2Qn+kC8k+C9kN+pgvIPwnab7d/mmn+qb+Tvx56ixUgCim6nKM6q4lueZPv1Xza1zWet0A+IurXupyjOqtpor6nkO0lupxtndatF9VEdaeIMmldzrpOa9aLaqz/BKJsWpezrtOa9Sr+U4iyaV3Ouk5r1qv4TyHKpnU5R3VWE93i1Z0myqZ1OaM6D+SfJsqndTmjOg/k7+LHQ48QQgghhHwHfOgRQgghhHwpfOgRQgghhHwp6UPvk3+XfOLvrQkhhBBCvpnwoXfi4cXHHiGEEELIfbgPvZMPLj72CCGEEELuYdtDb82QOfqMuONuQgghhBDyz3//H0HvkQLpFTQIAAAAAElFTkSuQmCC" alt="赋值前内存">

我们看到此时的内存杂乱无章。我们步进程序,给结构体变量var1赋值,再查看一次内存。

(gdb) step	#执行下一条语句
(gdb) x/24xb &t1
(gdb) x/24db &t1 #以十进制的形式打印内存

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAngAAACmCAYAAABJPPJMAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB0KSURBVHhe7Z3dimXJcYXPA8xr+Al6wBc2GN8YecBgDMIXYhgk90jyaCT3g847ycq2o4iKWvGTO3ee3DvPuvjozLUiIiP2Lqik/vrx7Xef//rNN98QQgghhJBN+NsF70doEEIIIYSQe/L49l/9C94vv/wC9Rk88yxCCCGEkJ1xv4K34sLFSx4hhBBCyDiPT+Bn8FZetHjJI4QQQggZA34F74xLVqshdfQ644yzCSGEEEJemccnc8E784Kla/XUnXnJ4wWSEEIIIbvz4Vu0vOARQgghhNybrq/gNc9S9WVtdUTme0htTcXzYqxu14QQQgghV6R8wbN6trdaW9u9rC2R54Fyqpqna62t7V7WhBBCCCFX4sP/ZOFdXKye7a2W+RU9oprTc6bWMp8QQggh5Co8Ppk/dBxdWponIC/SqjmRntHyNF6MpyO0r+M9jRBCCCFkNR++Rds4cpnJcqo1s3N66KmfnTu7V0IIIYSQs+j6O3hN11jP7rWG9rLWeHoGyss0b420ts7iCSGEEEKuwOOf/v330LAXGHShQTGC3utYrVk8vYLU1aC4hufrXOvLHnmEEEIIIVfi8atf/xEaDX2RQZeaMy86V7808VJHCCGEkLvw+I/vf4IGol1yNChmR15xZkIIIYTcl8f3//UzNAghhBBCyD15/P6//wINQgghhBByTz78oWNCCCGEEHJvHp/UBU//rJn382aRR16Dq75/+dhc9TGanZ35hBBCyFm8fQUPfdKxmt7zk9Tr0d65gPyVoJ6e2ac9q3dPCCGEnMnj2///r8rQJxyt8RPSa1B5z1f8WMg+fmeTnb+6P0IIIa/F2/9kceQTFNmPynu+4sdC9vGb0WIRKBaBYrWW+YQQQsiZvPsZPAv6BNX+FcQj90e/1+z9Rh7C1rR7L87T7d4j888EnaW1zI80QgghpJe3b9Fa7Ceatkea3pP7U3mnR9579rGT7UXTOooRIm8G9rysV+sTQgghZ/L2LVoN+sRT1ci9qbzTI+/d5kQ1mof86rnVOI2caUGxHjbP5mc+IYQQchYf/g6e90kH6fwEtR+Vd3r0vUuel9/0KMbL01RinkXWy5V6JYQQshePT+oreNEnHOTxE9R+VN7p0fcueZWPpUqMJfOfzd36JYQQsg9vF7zKJ9RsT+6Pfqfe+0V60yofD5WaXq2ofm/8DPR5WT/P7o0QQshr8fZbtO0TDsImRB7Zg8q7tzF27xHF6BpordF5XkzDxs0mO7fiI50QQgjpAf6SBSFkDbzgEUIIOYN3P4NHCFkLL3iEEELO4PHJ+Tt4hBBCCCHknoTfon3mVxP4lQtCCCGEkHMo/08Wz+DZZ/JSSQghhJAdgT+Dt/Li86yz0TlN01hfk/kzqPRVYUXvhBBCCHke0y54+jKi1xlnnF3BnoPO9Xppek+fvfEInX+0lvQx2gshhBBCrs2HC96Zn/x1rZ66z7iA2DPQmV4fTe/tsTfeovOjWpVzRnshhBBCyLV5+0PHwpmf/KuXEsvsCwiq36v19tgbb9H5Ua3KOaO9EEIIIeTafPgt2uzyYKn6srY6IvMRUldy9dri6RYbp/fIE/Re+0ivovOtJ7oFxTUijxBCCCH358Nv0Xqf/K2e7a3W1nYva0vkRVTqV2ujuKx+5Ld9lh+h82WNaiDNUokhhBBCyH0pf4vW6tneaplf0Su03Ci/UhvFWM2r0/RKvqchJE7He7mVmtVzCSGEEHJPun7JonkC8iKtmhPpFVpulJ/VjnryQHFaE72iIXScrL3cSs3quYQQQgi5J/B/skAXgOxSkOVUa2bnZLR8r0ZWu+fs6AzkVTWEjvPqC5Wa1XMJIYQQck/g/0XrXQDkciFYz+61hvay1nh6hax+VPvseOu3feRHoFpHvEwnhBBCyB6U/6sydClAMYLe61itWTy9gq4ra11PrxE6R1OJ07qN0Xk2rgfJq9TxPNE1NoYQQggh9wd+i1bQFwB0GTjzgjD7ssHLDCGEEEJehfCCZ2mXJA2KIYQQQggha+m64BFCCCGEkOvDCx4hhBBCyGbwgkcIIYQQshkfLnhHf75O/2yeBsW+KtGzsZ6gY3Sc1c/irPpRjZn9jzI6v5cvusXGreasvrwaV51bGO0vyx+tP5vR/rL80fqzGe0vyx+tP5vR/rL80fqzGe0vyx+t38u7C54+uLcJFO/VaHpU/+r+EVA9rWW+3aP4Uc6q33JRvugjtWei+zrSY5R/1Zk1o/MLLRfln1V/FqP9Zfmj9Wcz2l+WP1p/NqP9Zfmj9Wcz2l+WP1p/NqP9Zfmj9Y/wdsHLGurFy82GvLp/lOwsi/V683s5s37Li3LP7PssRufP8q84s2Z0fk3Ls7ln1p/BaH9Z/mj92Yz2l+WP1p/NaH9Z/mj92Yz2l+WP1p/NaH9Z/mj9oyy94CGu7p9JdJb1UKynRXU9qvUzJCfKPVJ3NqPzZ/lXnFkzOr8gOTb3rPqzGO0vyx+tP5vR/rL80fqzGe0vyx+tP5vR/rL80fqzGe0vyx+tf5THp+8+f11UGhT0XnwN0iVecycfxfT6mshHXo8W1fbI6ktd0fRax6C1JfJWgXqy8wh6j2KRJvGCjrsCqCet2d71WsegNdp72iqy/tpa0HsUi7TMX02lf0HvUSzSMn81lf4FvUexSMv81VT6F/QexSIt81dT6V/QexSLtMyfRfmCZ/dRc0e9xlV9pGst87WGdE1PLasdpVJf77N45AuRt4psHruPPKRV4leS9W/3WXyUG2mrqPSn95GHtMxfTaW/aJ4sP/NXU+kvmifLz/zVVPqL5snyM381lf6iebL8zJ/F48uXL18X1QaaFjWWNX1XH+lay3xLzzmeHtXvpVq/aZVYFCNE3ioqM4nWE2s1TeY/k56ZKrHZ3tNWUe2vaT2xaB1pq+iZqScWrSNtFT0z9cSidaStomemnli0jrRV9MzUE4vWkXY2vOAZPL/piKqPQL6X0xN7hGr9pkU6AsVabTXVPntmQpom859Jz0yRjhAf5VhtFdX+mtYTi9aRtoqemXpi0TrSVtEzU08sWkfaKnpm6olF60hbRc9MPbFoHWlnwwuewfNn1K1qnp6d2UNPf5Vzo5hK/rPxZkVaTyxaR9oqemaq9G1jqvVXUe2vaT2xaB1pq+iZqScWrSNtFT0z9cSidaStomemnli0jrRV9MzUE4vWkXY2bxe8Rk9DXnNZ03f1ka61UT/ShKye6FGNiKx+5msiP8tdRTbfiJ/tr0DUv9Wy/kfzV5D1N9tfzWj/o/5qRvsf9Vcz2v+ov5rR/kf9Gby74DXawV5zosvai7Oa6JY7+SjmbF9ikC5EuY3Mz/DytS7rKA7FRN5V8PrSuqyzOM/z/Cvg9ad1WUdxXgzSroTXn9ZlncUhMn81Xn9al3UWh8j81Xj9aV3WWRwi81fj9ad1WWdxiMxfjdef1mWdxSEy/2z+dsH7H2gQQgghhJB7wgseIYQQQshm8IJHCCGEELIZvOARQgghhGzG47eff4IGIYQQQgi5J4+/+8f/fCcc/S0PybOg2FclejbWE6IY7Z3FSG3dm1cj8q7AaH/V/Ks+g9H5Ba/GWfVnMdpflj9afzaj/WX5o/VnM9pflj9afzaj/WX5o/VnM9pflj9av5d3X8HTB/c2geK9Gk2P6l/dPwKqp7VR/wyy8yIq/Y3Ufwaj/VXzm3ek/myq/Wd4851Vfxaj/WX5o/VnM9pflj9afzaj/WX5o/VnM9pflj9afzaj/WX5o/WP8Pjnf/vh6yJrqBcvNxvy6v5RsrMs1uvN72W0fpY/Wn82o/315De9p/Yz6Ok/A813Zv0ZjPaX5Y/Wn81of1n+aP3ZjPaX5Y/Wn81of1n+aP3ZjPaX5Y/WP8rj7//lN18XZzfg5WY1r+6fSXSW9VCsp0V1Par1e9D5M+qfyWh/1XzRemo/g2r/Gd58Z9WfxWh/Wf5o/dmM9pflj9afzWh/Wf5o/dmM9pflj9afzWh/Wf5o/aM8fv2bH78uKg0Kei++BukSr7mTj2J6fU3ke57Wo5iotgfKsefp2nqNsB6KjfKfTdZfWwt6j2I9LYtfSdZ/Wwt6L75oaI32nraKrL+2FvQexSIt81dT6V/QexSLtMxfTaV/Qe9RLNIyfzWV/gW9R7FIy/zVVPoX9B7FIi3zZ/H481/+78+kVBrIGhaOeo2r+kjXWuZrDemayK/kHwHVtJreez00vVLL01ZR6U/vI8/TovzVnNF/5Gfxq6n0p/eRh7TMX02lv2ieLD/zV1PpL5ony8/81VT6i+bJ8jN/NZX+onmy/MyfxdsvWVQbaFrUWNb0XX2kay3zLT3nCNl5I6B6nlY528ZU66+i2l/TemLRGu1X0zNTJTbbe9oqqv01rScWrSNtFT0z9cSidaStomemnli0jrRV9MzUE4vWkbaKnpl6YtE60s6m/C1arUWNZU3f1W86ouojkO/l9MQeoVq/adVzdVy1/iqq/TWtJ1avPXTOKlAfnhbpCPFRjtVWUe2vaT2xaB1pq+iZqScWrSNtFT0z9cSidaStomemnli0jrRV9MzUE4vWkXY2vOAZPH9G3arm6dmZPfT01xOL1pG2ip6ZemKtJkTeCnpmqvRuY6r1V1Htr2k9sWgdaavomaknFq0jbRU9M/XEonWkraJnpp5YtI60VfTM1BOL1pF2Nu/+0HFPQ15zWdN39ZGutVE/0jzd07waGTovO8/6Wbzdo/jVZP2N+prMX8Hs+XryV5D1N9tfzWj/o/5qZs+X+asZ7X/UX81o/6P+DN5+yUJoB3vNiS5rL85qolvu5KOYs32JQXqjmu95Fbx8rcvaxmndejYGeVfA60/rss7iEDo3i12B15PWZR3FeTFIuxJef1qXdRaHyPzVeP1pXdZZHCLzV+P1p3VZZ3GIzF+N15/WZZ3FITJ/NV5/Wpd1FofI/LN5/MOvvocGIYQQQgi5Jx/+L1pCCCGEEHJv3n7JghBCCCGE7MHjy5cv0CCEEEIIIfeEFzxCCCGEkM34cME7+lsekmdBsa9K9mwyX8cg7wyO1pc8ixdn9avwrP6u+gyu/n5mw/k5/5H5Jc+CYq/MaN9Z/mj92Yz2l+WP1u/l3QVPH9zbBIr3ajQ9qn91/wiontYy3+5R/Cgj9VG81UbqP4Nn9ddq7zz/VefLeNb8mb8K3dNIf9l8mb8K3VNvfyjeq9H03vrPQPd0pL8sf7T+bEb7y/JH6x/h7YKXNdSLl5sNeXX/KDN6QdpRzq5vc2f3P8oz+2t1rzR746z5dc7VZox41vyZv4qs1yrZfJm/iqzXXrzcXefP8kfrz2a0vyx/tP5Rll7wEFf3z0Sfhc7t8bWG9Ixq/So29+z6Z/Os/qTmlWZvnDX/1eaq8qz5r/p8OP858wte7q7zZ/mj9Wcz2l+WP1r/KOULXlsLei++BukSr7mTj2J6fY2Xj9ZoH2lIz8jqS13R9NqC9Kq2iqy/thb0XnwbYz3x0foKVPoV9B751vNirL8Sr1+91n3rtfWtV/FXg/rRmu1br61vvYq/GtSP1mzfem1BusRrbMxKUD9as33rtY1FWuavptK/oPcoFmmZP4uur+BlDQtHvcZVfaRrLfO1hnTB86vaUSr19T46u1LL01ZR6U/vI8/TovzVnNV/j+7FrqDSn957vWczZf4qUF9W03tvjmy+zF8F6stqeh/NcdRbCerLanofeUjL/NVU+ovmyfIzfxbd36JtWtRY1vRdfaRrLfMtvfV66/dSrd+06FzPq9ZfRbW/pvXEojXar6Znpqh3z6vWX0W1v6ZFfWczZf4qvFmRFs2QzZf5q/BmRVo0QzZf5q/CmxVpPbFoHWmr6JmpJxatI+1seMEzeH7TEVUfoX0U2+OPUq3ftOhcz6vWX0W1v6ZFuiXzG7rOKlAfnhb17HmSZ0GxK0C9eFrUdzZT5q/CmxVp0QzZfJm/Cm9WpEUzZPNl/iq8WZHWE4vWkbaKnpl6YtE60s6GFzyD58+oq7VRf5Rq/aZF53petf4qqv017YxZeuNnU52paVHvnhflXAFvVqRFs2RzZv4qvFmRFs2QzZf5q/BmRVo0QzZf5q/CmxVpPbFoHWmr6JmpJxatI+1sHp+++/y26WnIay5r+q4+0rU227d7FC+652Vk9TM/0huV/JVk/UV+Fm+JvFVE81nN679H92JXkc2X+ZEuZP5KsvkyP9KFzF9JNl/mR7qQ+SvJ5pvtr2a0/1F/Bo9vv/vxndAO9poTXdZenNVEt9zJRzHP9nUM8hqZn+Hla13WXpzVNF7eVYjmEl3WNk7r1vNivLhVeD1pXdY6TmvW82KsfwW83rQuax2nNetV/Kvg9aZ1Wes4rVmv4l8Frzety9qLs5roFhS3Gq83rcs6i0Nk/mq8/rQu6ywOkfln8+GCRwghhBBC7g0veIQQQgghm8ELHiGEEELIZoQXvGd+r/iZZxFCCCGE7Ix7wVtx4Xr2mbxUEkIIIWRH4AVv5cXnWWejc5qmsb4m82dQ6avCit4JIYQQ8jymXfD0ZUSvM844u4I9B53r9dL0rE8dU4nP0PlHa0kfo70QQggh5Np8uOCd+clf1+qp+4wLiD0Dnen10fRKjzqmEh9RrdXbFyGEEEL24yUveKh+r1bpUcdU4iOqtXr7IoQQQsh+dF3wmmep+rK2OiLzEVJXcvXa4ukWG6f3qEbTLNrTMaJX0fnWE92C4hqRRwghhJD7U77gWT3bW62t7V7WlsiLqNSv1kZxUf1KfJSfofNljWogzVKJIYQQQsh9eeoFT3ueFukVWm6UX6mNYqyW7a1WqekhcVm9SNdUzyWEEELIPTn8LVrkRVo1J9IrtNwoP6sd9eQhPspB60hDoDpebqVm9VxCCCGE3JMPF7wGugBkl4Isp1ozOyej5Xs1sto9Z9tYlKu1zI+wdaK8Ss3quYQQQgi5J+ULnuga69m91tBe1hpPr5DVj2qPxqO91tBe1hk2NqpTOcPTCSGEELIH8ILXiC4Ontb2gt7rWK1ZPL2CritrXU+vETpHU4lDnt7L2mo9SF6ljueJrrExhBBCCLk/7gWvoS8A6DJw5gVh9mWDlxlCCCGEvArhBc/SLkkaFEMIIYQQQtbSdcEjhBBCCCHXhxc8QgghhJDN4AWPEEIIIWQzPlzwjv58nf7ZPA2KfVWiZ2M9QcfoOKufRXauxcbdFTRbA8XuTHXuXZ/Nq753gfNzfs6/z/zvLnh6sN4hUbxXo+lR/av7R0D1tJb5do/iR4nqzzjvSuw+X4Xo/Wuat+Pzqs6/K5yf86P1q7Dj/G8XPDTQyJBebvYQr+4fJTvLYr3e/F6yWmeedUV2ny+jZ/4Wu9vzQvO80scE5+f8FW1Xdp1/6QUPcXX/TKKzrIdiPS2q65HlHKl5J3afL6M6v8Tt9rzQPK/0McH5OX9F25Vd5y9f8Npa0HvxNUiXeM2dfBTT62siH3k9WlTbQ3Ik39bQuvV2YPf5MmTm6BloDfl3Jpt3dzg/569ou7Lr/I8ffvjh66IyoN5Hwx/1Glf1ka61zNca0jU9tax2FNSX3kfeDuw+X0abN3sGer/b80Hz7DZjBOfn/BVtV3ad//Hb3/3u66I6YNOiwbOHclcf6VrLfEvPOZ4e1e/lSP0zz78iu8+nyd6/9Xd7Ntn8u8P5OX9F25Vd5398/tz3M3hNiwbPHspd/aYjqj4C+V5OT+wRjtQ/8/wrsvt8muz9t7WHzrkraI5dZqvA+Tl/RduVXed//OEPf/y6qA7YtGjw7KHc1Z9Rt6p5enZmD1n92eevZvf5Mnrn3+3Z8P1z/oq2K5x/z/kfP/3009tGD5QN7A2fPZS7+kjX2qgfaUJWT/SoRoTNi847esZV2X2+Cj3PYMfno2d69ffP+Tm/9l6BHed//Onnn98JbTA0nNZl7cVZTXTLnXwUc7YvMUgXotxG5mdIPqoReTuw+3wVsmeg/Sjuruw4Uw+cn/Nz/n3mf/z885+hQQghhBBC7gkveIQQQgghm/H48uULNAghhBBCyD3hBY8QQgghZDN4wSOEEEII2YwPF7yjv0UieRYU+6pEz8Z6QhSjvbNB9Z95/mp2n8+j+m53fT7V+XeF83N+zr/P/O8ueHqw3iFRvFej6VH9q/tHQPW0NuqfSatraz/z/NWg+V8BPXM0/67Ppzr/rnB+zo/Wr8KO879d8NBAI0N6udlDvLp/lOwsi/V680dodVeevxo0/+70zLvj80HzvNLHAOfn/BVtV3adf+kFD3F1/0yis6yHYj0tqpshubaGd5bV7o43/+5U5931+aB5XuljgPNz/oq2K7vOX77gtbWg9+JrkC7xmjv5KKbX10S+52k9iolqR2T1M//u7D5fhMzb/hW8GLvegWze3eH8nL+i7cqu83d9BU/vo+GPeo2r+kjXWuZrDemayK/kH0XX9c6Yef5qKvPvCnqv0X6354Pm2W3GCM7P+Svaruw6f/e3aJsWDZ49lLv6SNda5lt6zhGy80aw9VD9meevpjL/zvS+792eTzb/7nB+zl/RdmXX+XnBM3h+0xFVH4F8L6cn9gitlof4KMdqd0XPa0Hxu4Hm1Jp+Hhadc1fQHLvMVoHzc/6Ktiu7zs8LnsHzZ9Stap6enTmCrf3s81ez82yI3ve72/PpnX83OD/nr2i7suv8bxe8hh4oG9gbPnsod/WRrrVRP9I83dO8Gj3YGtXzd2Hn2Twq71zY8fnomV79/XN+zq+9V2DH+d9d8BptMDSc1mXtxVlNdMudfBRzti8xSG9U8z2vgq5va3n6TtgZd53TI5tb+1HcXdlxph44P+fn/PvM/+GCRwghhBBC7g0veIQQQgghm8ELHiGEEELIZvCCRwghhBCyGbzgEUIIIYRsxocL3tHfIpE8C4p9VbJnk/k6BnlnkdXPehNQzJ3J5sv8u7P7fFVeefbG7vN788nHvRB5go65A3ft+yx2m//dBU8P1jskivdqND2qf3X/CKie1jLf7lH8KK2m0OtXtbuSzffq878CbV4B+buz+/zRfJlWzbky2Ty7s+P8bxc8NNDIkF5u9hCv7h9lRi9IO4OsbrWXWf2tIJvv1ed/JV51bmH3+asf69FzuNsz6p1vN3adf+kFD3F1/0z0WejcHl9rSO8hy+/pxWp3JZvv1ed/JV51bmH3+asf69FzuNsz6p1vN3adv3zBa2tB78XXIF3iNXfyUUyvr/Hy0RrtIw3pPWT51fqjfVwdO5/e7z574xVmRLzq3MLu81fn8+Lu+HxQz7u/Z82u83d9BU/vo+GPeo2r+kjXWuZrDemC51e1M8jqVs6d1dssWr8IFNvwvCzvqkjfFhTbiLw7YucWvFik3xk7t+DFIn0XKvNFMXd8Pqjn3d+zZtf5u79F27Ro8Oyh3NVHutYy39Jbr7f+CFndUf/uePNpfednsPv7zeD8e8+fzRf5d302qO/d37Nm1/l5wTN4ftMRVR+hfRTb459JVjfyZ/V0Fbz5kL7js9j9/VZ49Wew+/zRfNnsd302qO/d37Nm1/l5wTN4/oy6Whv1zySr6/mz+rkK0XzI2+157P5+q7z6c9h9fm++ytx3fTao793fs2bX+d8ueA09UDawN3z2UO7qI11rs327R/Gie16VLB/5Ve2uZPO9+vyvxKvOLew+f/VjvardBd37nec4yo7zv7vgNdpgaDity9qLs5roljv5KObZvo5BXiPzIyRXU/WR19D5dwbN1ohitHd37GwCit0Vzr/3/NF8yGvofImz2p3w5noVdpv/wwWPEEIIIYTcG17wCCGEEEI2gxc8QgghhJDNCC94z/xe9Ct/358QQggh5EzcC96KC9ezz+SlkhBCCCE7Ai94Ky8+zzobndM0jfU1mT+DSl8VVvROCCGEkOcx7YKnLyN6nXHG2RXsOehcr5em9/TZG4/Q+UdrSR+jvRBCCCHkynzz1/8FACLbYxq6Db8AAAAASUVORK5CYII=" alt="赋值变量1后内存">

我们很明显发现在0x7ffffffee370的值发生了改变,也就是结构体变量t1所在地址的第一个字节被修改了。结合我们我们的赋值语句:给结构体第一个char变量赋值,我们很容易发现:结构体第一个char变量就在结构体变量t1地址0偏移的地方。十六进制的0x41转换为十进制就是65,正好是A的ascii码。

再次步进,给第二个结构体变量赋值,再次查看内存。

(gdb) step	#执行下一条语句
(gdb) x/24xb &t1

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnYAAABpCAYAAAC3S26eAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABK2SURBVHhe7d1Lrh1HjoBhLcArca2nZ72Bkl2AZ43eVK+i2/VSDb2e2xUFs0BRfAQzMk/kSf2DD4gkGUyGzgVOQA/703/94T8//uOPv3z88MMPAAAAeGNc7AAAAB6Cix0AAMBD/H6x++wmhy9fvrjxK7zyXQAAAE/zz4vdHz5+/PFHN7njosXlDgAA4Jjwj2J3XrC43AEAAPRderEbPaSPXlfOeDcAAMD3xr3YnXmx0r06fa+83HFxBAAAT8TFDgAA4CHaF7uRs2bzsrZxT5WPSG9tJhfV2LhdAwAA3MWn//nvb/9VbHRpsfHq2cbG2j7L2spyEW/PbCyK69hY22dZAwAA7Pbpt99++/jll7nfsbPx6tnGqvxMPDO7p/NOHavyAAAAO7UudsPICS+XxWb3ZPHK2KdFNVHco/O6PooBAADs4F7shiOXmGrPbM/qPR2d/tV7r54VAABgRetiJ3HN5uyzjnnPstaieMXbV8WitRcb66oeAABgl/BiN9iLi3eR8WqEfta1OmZF8RnSV/Pqhiiv99q8PHs5AACA3dKL3aAvMN5l5swLzt0vS1zmAADAnZUXO2tcbjSv5om+xzMDAID30r7YAQAA4J642AEAADwEFzsAAICH+OZip/8umf37ZDYndA2+D3f93Hf/bFbvXs0DAJD56mLnfZnoWJXH843PW3j5nXb/fNp3nf0MAECldbGz+OJ5ppnP9Y6ffffn92zV+1fzAABUuNjhGzOf67t89p05R63Hq/V4tTq2mgcAoFL+44noi4UvnOcZn6nl1Q1ZzmN72ueoLorbZ0+Wu4L3Ph1bzWcxAACG9GKXfYHw5fJcM5/tkc/f7uk+S0zHZ2pexb7TzrGaBwCgEl7ssi8UvmyebebzPfIzYPdUP2NevvPeTu0g77S82ojdZ/ev5gEAyLgXu+rLhC+bZ5v5fI/+DMi+aP+IZzXRvki3/mzV+1fzAABo31zsZr5I+LJ5tit/BmSft9/GZmq0bv0rVO9fzQMAoH11sZv9YuTL5tn05xt91tHPxczPxkzPqFfWv1t/Bf2+ap4jeQAAMt9c7Dx2kxfDs2SfvWVzut6T1ege3lrT+8RMzdWqd5+R9+IAAIT/eALAPXGxAwBEuNgBb4aLHQAgwsUOAADgIcqL3St/d4DfiQAAADguvdjtuGi9+p1cJgEAwFOEF7udF55Xvdt7z4hpNq9V+SvMzDVjx+wAAOBal17s9CVErytnvHuGfY/33miWEe/M2a336P1He8kcq7MAAID7cS92Z37p616dvq+4eNh3eO+M5hjx7ozdekvvz3rNvGd1FgAAcD/f7cXO69+NdWfs1lt6f9Zr5j2rswAAgPtpX+xGzprNy9rGPVXeI31lr15bUdyydfrZywn9rPNefJbeb3MSt7y6IcsBAID31LrY2Xj1bGNjbZ9lbWW5zEz/2d5eXdU/y4/nan9G75e118OLWTM1AADgvbz8YqdzUSyLzxh7s/0zvb0aG4v6jPjM/ijmkTpdH+2d6Tn7XgAA8D6W/ijWy2Wx2T1ZfMbYm+2vemczRbw6HZP4TMyj62Qd7Z3pOfteAADwPtyL3eB98VeXgWrPbM/qPZWxP+pR9e68O3uHl5uNeXRd1F/M9Jx9LwAAeB+ti53ENZuzzzrmPctai+Izqv5Z77PrbX48Z/mM1+tIrooDAID3FV7shuzCEMXGs9DPulbHrCg+Q/eVte6n1x69R5up03Fbo/fZug7ZN9MnyklcszUAAOA9pRe7QX/xe5eAMy8GV18yuMQAAIAnKy921rgcaV4NAAAAXq99sQMAAMA9cbEDAAB4CC52AAAAD+Fe7I7+/Tn9d+80r/Z7lf3a2JzQNbrOxs9yVv+sx5Xzr1o9f7Rf4pat2+2suaIedz23WJ2v2r/a/2qr82X7JZfV7LY6W7V/tf/VVuer9q/2v9rqfNX+1f4zfr/Yff53QL+w+3KvPuox4ln/u+eP8PrpWJW3z179qrP6j73efomv9L6SnuvIjNn+u55ZWz2/GHu9/Wf1v8rqfNX+1f5XW50v2+/1O/KOK2Xzz6j2r/a/2up81f7V/ldbna/av9p/1lcXu2qQrmhvdbi754+q3mXZXHd/15n9x75s75lzn2X1/NX+O55ZWz2/NvbZvWf2v8LqfNX+1f5XW52vqv0ez69jq/2vtjpftX+1/9VW56v2r/bv2H6x89w9f6bsXTbn1UaxrG9ktn9F9mR7j/S92ur5q/13PLO2en4he+zes/pfZXW+av9q/6utznfkLE8/v46t9r/a6nzV/tX+V1udr9q/2r+jdbEba6GfJa95canX3inv1XTzWpb3cp1Y1jtS9Ze+EtNrXeOtrSy3izeTPY/Qz16tF5N6oevuwJtJx+zseq1rvLX3HMV2qeYba6GfvVovVuV3m5lf6GdbK3Gd81T5V/Pm0TE5k8T02tZ6sSq/28z8Qj97tV6syu82M7/Qz16tF6vyZ2r/jl01qDiaG+6a9+I6VuV1zItrnV42dtRMf/1c1Xt5keV2qc5jn7OcF5up36ma3z5X9dneLLbLzHz6Oct5sSq/28x82XnGc1avY158t2jW6DnLebEqv9vMfNl5qv1VfreZ+bLzVPur/JkO/VHsiGUDVcO+a96L61iVtzrvieJZ/67Z/iM2U+vViCy3y8yZJNaptTGtyr9S50wztdVzFNtldr4R69R66yy2S+dMnVobE1luh86ZOrXeOovt0jlTp9ZbZ7FdOmfq1HrrLHYGLnaOKD/intm8x8tHezq1R8z2H7Es7vFqbWy32Tk7Z/JiWpV/pc6ZsrhH8t4eG9tldr4R69R66yy2S+dMnVob06r8K3XO1Kn11llsl86ZOrXeOovt0jlTp9ZbZ7EzcLFzRPkr+s7Gonj1zo7OfDPvzWpm9r9adFYv1qn11llsl86ZZua2NbP9d5mdb8Q6td46i+3SOVOn1ltnsV06Z+rUeusstkvnTJ1ab53FdumcqVPrrbPYGb662A2dQaKhqmHfNe/FdWw1n8VE1U/iWY9M1b/Ka1m+2rtLdb6VfPV8B9n8NlbNv7p/h2q+q/O7rc5vY9363TrzXpHfbXX+1fxuq/Ov5s/yzcVuGC+MhpK4rKM6G5O49U55r+bsvNR4cZHtHap8Jdqv47LO6ryaLHcX0Vw6LuuqLspF+TuI5tNxWWd1UY0Xu5NoPh2XdVXnqfK7RfPpuKyzuirn5e8gmk3HZV3Vear8btF8Oi7rqs5T5XeL5tNxWVd1nip/BvdiBwAAgPfz+8Xu6/9XLAAAAN4PFzsAAICH4GIHAADwEFzsAAAAHsK92B39Vxuyz/Jqv1fZr43NiaxG586y0lvPFvXIcnewOt/s/rv+GqyeX0Q9zup/ldX5qv2r/a+2Ol+1f7X/1Vbnq/av9r/a6nzV/tX+V1udr9q/2n/GNxc7/cLuy736qMeIZ/3vnj/C66djq/kzVO/LzMy30v8VVueb3T9yR/pfbXb+SnS+s/pfZXW+av9q/6utzlftX+1/tdX5qv2r/a+2Ol+1f7X/1Vbnq/av9p/11cWuGqQr2lsd7u75o6p3WTbX3d+12r/av9r/aqvzdfaPeKf3K3Tmr3jnO7P/FVbnq/av9r/a6nzV/tX+V1udr9q/2v9qq/NV+1f7X211vmr/av+O7Rc7z93zZ8reZXNebRTL+kZm+3fo/Vf0P9PqfLP7Jdbp/Qqz81ei853V/yqr81X7V/tfbXW+av9q/6utzlftX+1/tdX5qv2r/a+2Ol+1f7V/R+tiN9ZCP0te8+JSr71T3qvp5rUsH+V0PKvJeke8PfZ9urdee2zOq832v1o131gL/ezVRrGqfqdq/rEW+lnyEvPW3nMU26Wab6yFfvZqvViV321mfqGfvVovVuV3m5lf6Gev1otV+d1m5hf62av1YlV+t5n5hX72ar1YlT9T+3fsqkHF0dxw17wX17Eqr2NeXMvyM/uP8HramH6OZhjxmV5RbJeZ+fRzloti2f7dzpg/y1f1u83Mp5+znBer8rvNzJedp9pf5XebmS87T7W/yu82M192nmp/ld9tZr7sPNX+Kn+mQ38UO2LZQNWw75r34jpW5a3Oe0T1vhVevyg2825bM9t/l9n5RqxT66295906Z5qprZ6j2C6z841Yp9ZbZ7FdOmfq1HrrLLZL50ydWm+dxXbpnKlT662z2C6dM3VqvXUWOwMXO0eUH3HPbN7j5aM9ndojZvuP2Ox7dd1s/11m5xuxTq1eR/SeXbw5olgW90je22Nju8zON2KdWm+dxXbpnKlT662z2C6dM3VqvXUW26Vzpk6tt85iu3TO1Kn11lnsDFzsHFH+ir6zsShevbOjM1+n1ltnsV06Z+rU2pjIcjt0zjQzu62Z7b/L7Hwj1qn11llsl86ZOrXeOovt0jlTp9ZbZ7FdOmfq1HprL79b50ydWm/t5c/01cVu6AwSDVUN+655L65jq/ksFsWjWNSjovdV77P5qt4+e/W7VfOt5rUqv8PV5+vs36Ga7+r8bqvzr+Z3W51/Nb/b6vyr+d1W51/Nn+Wbi90wXhgNJXFZR3U2JnHrnfJezdl5qfHiw+z+KDcj2q/jsrZ1Om5ztsbL3UE0n47Luqrz6L1V7Q7RTDou66wuqvFidxLNp+Oyruo8VX63aD4dl3VV56nyu0Xz6bisqzpPld8tmk/HZV3Vear8btF8Oi7rqs5T5c/gXuwAAADwfrjYAQAAPAQXOwAAgIfgYgcAAPAQn/73/379+OPnz24SAAAA7+PTr7/++eOzudgd/Vcbss/yar9X1a9Nldc1Xu4MR/vLPiuqs/G7eNV8d/01uPvnczXOz/mPnF/2WV7tna3OXe1f7X+11fmq/av9Z3z681/++vHTTz/9O6Bf2H25Vx/1GPGs/93zR3j9dKzK22evftVKf6/exlb6v8Kr5hu9n3z+u56v8qrzV/ld9Ewr81Xnq/K76Jm683n1UY8R7/Z/BT3Tkfmq/av9r7Y6X7V/tf+sT3/9298/fvr55389VIN0RXurw909f9QVs3ixo87ub/dePf+qV843+t7p7MNZ59d77nbGzKvOX+V3qWadVZ2vyu9SzdoV7X3q+av9q/2vtjpftX+1f8env3/5x8fPP//pXw9nvzjaW/W8e/5M+l3eezt5HfPildn+s+zes/uf7VXzSc87nX046/x3O9esV53/rr8+nP+c84to71PPX+1f7X+11fmq/av9Oz59+cc/L3Z/mrvYjbXQz5LXvLjUa++U92q6eS3a76295yzmxStVf+krMb22vPhsbJdqvrEW+lnytsbmJO+t72BmXqGfvbzNRTU2v1M0r17rufXa5m1uJr+bN4+O2bn12uZtbia/mzePjtm59dry4lKv2ZqdvHl0zM6t17bWi1X53WbmF/rZq/ViVf5MrYudfc6GOpob7pr34jpW5XXMi4soPxs7aqa/fs7ePdMriu0yM59+znJRLNu/21nzd+JR7Q4z8+nnaPbqTFV+F28uG9PP0Tmq81X5Xby5bEw/Z+c4mtvJm8vG9HOW82JVfreZ+bLzVPur/JkO/VHsiGUDVcO+a96L61iVt7r9uv27ZvuPWPbeKDfbf5fZ+UasU+utvefdOmfKZo9ys/13mZ1vxLK5qzNV+V2is3qx7AzV+ar8LtFZvVh2hup8VX6X6KxerFPrrbPYLp0zdWq9dRY7w1f/geLOsNlA1bDvmh9xz2zeo/NebSe/arb/iGXvjXKz/XeZnW/EsrhV5QfdZxdvjiiWzRzlZJ/l1e7gzRLFsrmrM1X5XaKzerHsDNX5qvwu0Vm9WHaG6nxVfpforF6sU+uts9gunTN1ar11FjsDFztHlL+ir46t5lfN9h+x7L1Rbrb/LrPzjdgZZ+nWX232TCOWzR7lsj13EJ3Vi2Vnqc5Z5XeJzurFsjNU56vyu0Rn9WLZGarzVfldorN6sU6tt85iu3TO1Kn11lnsDN/8L8U6g0RDVcO+a96L69jVefvs1Us8ylWq/lU+iw8z+3eq5svyVb2V5XbJzmdj0fydeFS7S3W+Kp/FRZXfqTpflc/iosrvVJ2vymdxUeV3qs53dX631flX82dx/1+x44XRUBKXdVRnYxK33inv1bw6r2u83FDlK9F+HZd1VGdjWrTvLrJzSVzWtk7HbS6qiep2iWbScVnrOh2zuajG5u8gmk3HZa3rdMzmZvJ3Ec2m47LWdTpmczP5u4hm03FZR3U2JnHLq9stmk3HZV3Vear8btF8Oi7rqs5T5c/gXuwAAADwfrjYAQAAPAQXOwAAgIcoL3ZX/1mw9sp3AQAAPE16sdtx0eJyBwAAcEx4sdt5weJyBwAA0HfpxW70kD56XTnj3QAAAN8b92J35sVK9+r05XIHAADQw8UOAADgEX74+H/wv3T+jbr6QgAAAABJRU5ErkJggg==" alt="赋值变量2后内存">

对比上一次的内存,我们发现不是第二个字节的值被修改,而是第五个字节的值被修改了。这是结构体存储时候做的字节对齐,给第一个char变量后填充了3个字节,避免第二个变量int横跨边界。十六进制的0x63就是十进制的99。我们知道int变量占据4个字节,因此下一个long变量存储从0x7ffffffee378开始,长度为8个字节。显然存储采用了小端存储的方式:低字节存储在内存的低地址。

下一条语句是给变量3赋值999,十进制的999对于十六进制的0x3E7,因此我们猜测下一次内存在0x7ffffffee378开始的前两个字节会被修改。

0x7ffffffee378 0xe7 0x03 0x00 0x00 ...

我们继续步进,给变量3赋值,查看内存验证我们的想法。

(gdb) step	#执行下一条语句
(gdb) x/24xb &t1

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAnQAAADLCAYAAADnag5GAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAClWSURBVHhe7Z1NjmXJjaXfArSB3ILmmgndk+qJgAK6CqgSVJmR2UCrMlM1ioVqT+qykOhNp/P38trjvc/P4EPSziFppL+Q3BC/jy+//Pi33/zmN3/761//+u2/HEvTdMLzFnf1d/TlWtfvku2/NO9ey8v2nyI739LO2KWav5vsTkvzZrc8r+YKWLtqmrdLtGfkT2HtqmneDtF+kT+FtaumeTtE+0X+FNaumlbJ1WJPm6KyUyVXiz2ty+PHX//+oFtUBrCGiYa8q6/pXNvty7OWT7rlRUT9I9/TF5n6SaL5PD/Kl3jeFN5+UrPmr+hW7hTRfpHv6UTkTxLtF/meTkT+JNF+ke/pRORPEu2325+mO3/XP4P/ftD99E5YF1nDkE6xlSc10iV38rWcZ/s8R/MWkR9h1XOdYitPahyr7ip4e5FOsczjuvSsHCtvCmsmrlPM87gmPStH+lfAmo3rFPM8rkkv418FazauU8zzuCa9jH8VrNm4TrGVJzXSJVreNNZsXKc4ytOI/Gms+bhOcZSnEfld3v0MHQAAAAAAuB+PH37+QTUAAAAAAMA9ePzpz/+hGgAAAAAA4B48fvzL+99Dx9n5a72SZ94FAAAAAPBKPL788kU1Jh5YeNQBAAAAANRRf4Zu8mGFRx0AAAAAQI23v1iYc8ajavWgPjyOOONuAAAAAIDPxIcH3ZkPKt6r0nfnow4PRgAAAAC8Gh/+Hjo86AAAAAAA7sXj+//8/p3gPXiWJ8n6FEtdI/ItqDcn41k5UpcxAAAAAMAVSD/opB6dpbZieaZY4nkWWk1Ws3SurVieKQYAAAAAmET9t1z52dKjs9QiP6N7ZGsqd3It8gEAAAAApvjw15Z4j5TlEZrnadkaT49YdRwrx9I1uM/zLQ0AAAAA4Nmo/zj/kcdLVJPtGd1TodI/unf3rAAAAAAAR/nwS64L79HDkZ48c007U8yx9AitLtKsWNNWHOUDAAAAAExg/luu8sGiPWC0HIKfeS7XJJaegfpytLyF5fNa6dNZ8wAAAAAAJlH/pQiCP1y0R8yZD5urP5LwiAMAAADAVXn88PMPqqGxHjUcLecV+Yw7AwAAAOA+lB50AAAAAADgepi/hw4AAAAAANwDPOgAAAAAAG7Ouz8UwX+vmPz9YtIjeA74HFz1c5/+sRnd3fUBAAAAi7efodO+iXAt8sHrsz5vQvMnmf7xKe86+wwAAAB4vP0MnfYNxPumgm84r0nmc73iZ1/98Xs20f1dHwAAAPBI/wydBN9sXpPM53qXz74y58rV0HI1tFyudX0AAADA4/Gn//sn1VhY31Dwjeb1WJ+pRMtbeJ6G7CnPVp6ly7OG5+1Au49rXd/TAAAAgMeXX76ohveNA99UXpfMZ3vk85c11TNpXM/kPAt5p5yj6wMAAAAe6j/95X0jwTeZ1ybz+R75MSBroh9jml+5t5K7oDslWq6FrJP1XR8AAACw+PAzdNE3EXyTeW0yn+/RHwNUZ9Uv3cux6iyq+WcT3d/1AQAAAOLdXyyc+QaCbzKvzc4fA1Sn1Ustk8Op5j+D6P6uDwAAABCPH3+t/bUl+Cbz2vDP1/qsrR8XmR8bmZ5WL69/NX8H/L5oniM+AAAAYPHuQachCzQNvBbeZy+RHs/X8HJ4Dy3m8Doik7Ob6O4zfE0HAADwuVH/UAQA4JrgQQcAAEDj8R9//l41AADXAw86AAAAGubfQwcAAAAAAO7Buz/lKnnmzwbgZx4AAAAAAI7x9ociJBMPrGffiUckAAAAAF4B9WfoJh86z7pbu2dpHOlzIn8HmbkyTMwOAAAAgH2U/+mvLPzxweOIM+7OIO/R7rVmWXplzmq+Bq8/2ovm6M4CAAAAgGvx4Zdcz/xmz3tV+j7jwSHv0O605lh6dcZqvoTXe70y93RnAQAAAMC1+PAzdGd+s88+QiS7Hxxa/6pWnbGaL+H1Xq/MPd1ZAAAAAHAtPvw9dNFjQZL1KZa6RuRrUF+q5bHE0iUyj581j+Bn7mt6Fl4vPdIlWt7C8wAAAABwP9I/Qyf16Cy1FcszxRLP88j0z/bW8qL+nr/OUb0Hr6dY66FpkkwOAAAAAO7D48e/PO9Bxz1L8/QMq9arz/TWcqRm9Vl6pt7SNCiP51u1mZ7ZewEAAABwDz78SxHeN/vlEZrnadkaT8+war36qLc3k4WWxzXSM5oGz6PYqs30zN4LAAAAgHvw4WfoFto3/OgRENVke0b3RKx6q0fUu3K3d4fmZTUNnmf1JzI9s/cCAAAA4B6o/5ar9Q2fHhOE9OSZa9qZYo6lZ4j6e73Pzpf+Onu+h9briBfpAAAAALgn6oNu4T0ULG2dCX7muVyTWHoG3pdi3o/HGryGk8njuszhdTKvAtVl+lge6RyZAwAAAID7YT7oFvwbvvbN/8wHwe7HBR4vAAAAAHhVHt//5/u/h85jPYo4Wg4AAAAAAHgu6h+KAAAAAAAA9+HDv+UKAAAAAADuxePLr/bvoQMAAAAAANdH/YuFj/z+OP576zha7mfF+9pIj+A5PE/qZ3FWf6/Hzvm7dPe36kmXyLxpzprL6nHVvYnufFF9t/9uuvN59eR5OdN0Z4vqu/13050vqu/23013vqi+2z/i3e+h4xdVL9XyrR5L9/pf3T+C1o9rkS/PWn6Xs/qvWq2e9E7vnfC5jszo1V91Z053f2LVavVn9d9Fd76ovtt/N935vHqt35E7duLNnyGq7/bfTXe+qL7bfzfd+aL6bv8Mj5/+66dvQTRAFas2Wurq/lGiuyTSq9ZXObP/qvNqz5z7LLr7R/VX3JnT3Z+z6mTtmf130J0vqu/23013vij3M+7PtW7/3XTni+q7/XfTnS+q7/bP8vjhlx++BWdfaNVGPa/un4l3l/S0XEvz+lpk+0dQjVd7pO9uuvtH9VfcmdPdn6AaWXtW/11054vqu/13053vyC6vvj/Xuv13050vqu/23013vqi+2z/L299DlxmI4GfyOZpO+Zw7+VpO1ed4vuZVNK+3RdSf+pLGY56jxRLPm0KbSe5D8LOWq2mUT/C8K6DNxDU5O495jhZrZ0ubIppvxQQ/a7maFvnTZOYn+Fnmks49jch/Nto8XKOdSOOxzNW0yJ8mMz/Bz1qupkX+NJn5CX7WcjUt8s/i7Q9FZC6MBiSOeour+prOtcjnmqZzKr2kdpRMf36O8jWf8Lwpon3k2fM0LZM/STS/PEf5Xq2nTZGZj589T9Mif5rMfN4+6+zlc03Tp7Fmtc6ep2mRP01mPm+fqD7yp8nM5+0T1Uf+WTy+/OPvocteuDRvkGjIu/qazrXIl1TusXSvf5Vs/6VlcrUcwvOmyOxEWiVXapzIfyaVnTK50dnSpsjOt7RKrhZ72hSVnSq5UiM8b4LKTpVcLfa0KSo7VXK12NOmqOxUydViT+vy+PKPP+VaGdIbJBryrv7SNbK+huZbNZXcI2T7L83TNbRcqU2TnbOyk6ZxIv+ZVHbydA3ytRqpTZGdb2mVXC32tCkqO1VypcaJ/GdS2amSq8WeNkVlp0quFnvaFJWdKrla7Gld3v5i4cqQ3iDRkHf1d/TNapYe3VmhMl/mXi8nU/9srF01rZKrxZ42RWWnzNwyJ9t/iux8S6vkarGnTVHZqZKrxZ42RWWnSq4We9oUlZ0quVrsaVNUdqrkarGndXn3T39VBrCGiYa8q6/pXOv6Xh8i6ke618Mj6h/5HM+PaqeI9uv40fkKePNLLZq/Wz9BNN9uf5ru/FKr5k9TmXeHP013/q4/TXf+rn8GH/4t13WRNQzpFFt5UiNdcidfyznbpxxNJ7zaReRHWPVcp9jL03I87ypYc3Gd4ijP8iz/CljzcZ1iL8/K0bQrYc3HdYqjPI3In8aaj+sUe3mRp/lXwJqN6xRHeRqRP401H9cpjvI0In8aaz6uUxzlaUR+l8f3P//9ry0BAAAAAAD35O3voQMAAAAAAPfk3b/lCgAAAAAA7seH30MHAAAAAADuxePHv/z9H+cHAAAAAAD35PGTeNAd/VMYVCfRcj8r3tdGeoSXw72z6PTms1k9PO8KdOfL1l/1a9Ddn7B6nNV/F935ovpu/91054vqu/13050vqu/23013vqi+23833fmi+m7/iNLfQ+eh5Vs9lu71v7p/BK0f17r+GUT3eWTm6/R/Bt35svXLO9J/N9n5I6z9zuq/i+58UX23/26680X13f676c4X1Xf776Y7X1Tf7b+b7nxRfbd/hsfXr1+/BdEAVazaaKmr+0eJ7pJIr1pfpds/qu/23013vkr90iu9n0Fl/ghtvzP776A7X1Tf7b+b7nxRfbf/brrzRfXd/rvpzhfVd/vvpjtfVN/tn2X0Qadxdf9MvLukp+VamtfXItu/Aq/f0f9MuvNl60mr9H4G2fkjrP3O6r+L7nxRfbf/brrzRfXd/rvpzhfVd/vvpjtfVN/tv5vufFF9t3+W9INuxQQ/k8/RdMrn3MnXcqo+x/Mtj+tejtfbQquR9/HePNaQnpbr1T+baL4VE/ys5VpalD9JNP+KCX4mnzQt1s6WNkU034oJftZyNS3yp8nMT/CzlqtpkT9NZn6Cn7VcTYv8aTLzE/ys5Wpa5E+TmZ/gZy1X0yL/LEo/QxcNSBz1Flf1NZ1rkc81Ted4fqb+CFpPqfGzNcPSM70sbYrMfPzseZbm1U9zxvyeH+VPk5mPnz1P0yJ/msx83j5RfeRPk5nP2yeqj/xpMvN5+0T1kT9NZj5vn6g+8s+i/EuuS/MGiYa8q6/pXIt8SeUeIrqvg9bP0jJ3y5xs/ymy8y2tkqvF2nmayk6Z3OhsaVNk51taJVeLPW2Kyk6VXC32tCkqO1VytdjTpqjsVMnVYk+borJTJVeLPa0LHnQCy1+6RtbX0HyrppJ7hGz/pWXv5XnZ/lNk51taJZfHFrxmCm0OS/N0DfK1GqlNkZ1vaZVcLfa0KSo7VXK12NOmqOxUydViT5uislMlV4s9bYrKTpVcLfa0LnjQCSx/R9+sZunRnRUq81VytdjTpqjsVMmVGuF5E1R2yswuc7L9p8jOt7RKrhZ72hSVnSq5WuxpU1R2quRqsadNUdmpkqvFnjZFZadKrhZ7Wpe3B92iMoA1TDTkXX1N51rX9zRLtzSrRwSvi+6TfpQvz1r+NNF8XZ8T+RPs3q9SP0E0325/mu78XX+a7vxdf5ru/F1/mu78Xf8M3j3oFusiaxjSKbbypEa65E6+lnO2TzmavsjWW14Gq57rFMs8rktP5mjeFbDm4zrFUZ4Gr41yJ7Bm4jrFXp6Vo2lXwpqP6xRHeRqRP401H9cpjvI0In8aaz6uUxzlaUT+NNZ8XKc4ytOI/Gms+bhOcZSnEfldPjzoAAAAAADAvcCDDgAAAADg5uBBBwAAAABwc/CgAwAAAAC4OXjQAQAAAADcnA8PuqN/CoPqJFruZyX62kQ+z9G8Mzjan+okVp7Ur8Kz5rvq1+Dqn89usD/2P7I/1Um03CvTnTuq7/bfTXe+qL7bP+Ldg45fVL1Uy7d6LN3rf3X/CFo/rkW+PGv5XTr9tXypdfo/g2fNt3q/8v5X3S/iWftH/hR8ps580X6RPwWfqTqflm/1WHq1/zPgMx2ZL6rv9t9Nd76ovts/w9uDLhqgilUbLXV1/yg7ZtG0o5zdX9bunr/LM+dbfa+0++Ks/XnN1Xb0eNb+kT9FNGuWaL/InyKatYpV+6r7R/Xd/rvpzhfVd/tnGX3QaVzdPxN+l3Zvxed9ND0iur+KrD27/9k8az7qeaXdF2ftf7W9sjxr/6t+fbD/OfsTVu2r7h/Vd/vvpjtfVN/tnyX9oFsxwc/kczSd8jl38rWcqs+x6rVYO3uapkdE/akvaTyWaHpWmyKab8UEP5Mvc6RHvhZfgcy8BD9rvvSsHOlPYs3LYz43j6UvvYw/jTYP1+TcPJa+9DL+NNo8XJNz81ii6ZTPkTmTaPNwTc7NY5mraZE/TWZ+gp+1XE2L/LN4/Pnn/M/QRQMSR73FVX1N51rkc03TCcvPakfJ9Odn7+5ML0ubIjMfP3uepXn105w1f0W3cifIzMfP1uzRTpE/hTaX1PjZ2iPaL/Kn0OaSGj97exz1JtHmkho/e56mRf40mfm8faL6yD+Lx8//+rtvQfbCpXmDREPe1dd0rkW+pNqv2r9Ktv/SvHstL9t/iux8S6vkarF2nqaykze75WX7T5Gdb2ne3NFOkT+FtaumeTtE+0X+FNaumubtEO0X+VNYu2paJVeLPW2Kyk6VXC32tC6Pr19//RZUhvQGiYa8q790jayvwX0tt+J3yfZfmnev5WX7T5Gdb2meLon8Be8zhTaHpXkzWx7VSbTcCbRZLM2bO9op8qewdtU0b4dov8ifwtpV07wdov0ifwprV02r5Gqxp01R2amSq8We1qX8hyKW5g0SDXlXf0dfrnX9Ltn+S/Putbxs/ymy8y3tjF2q+bvJ7rQ0b3bL82qugLWrpnm7RHtG/hTWrprm7RDtF/lTWLtqmrdDtF/kT2HtqmmVXC32tCkqO1VytdjTurw96BaVAaxhoiHv6ms613b78qzlk255EVH/yPf0RaZ+kmg+z4/yJZ43hbef1Kz5K7qVO0W0X+R7OhH5k0T7Rb6nE5E/SbRf5Hs6EfmTRPvt9qfpzt/1z+Dx03ffvRPWRdYwpFNs5UmNdMmdfC3n2T7P0bxF5EdY9Vyn2MqTGsequwreXqRTLPO4Lj0rx8qbwpqJ6xTzPK5Jz8qR/hWwZuM6xTyPa9LL+FfBmo3rFPM8rkkv418FazauU2zlSY10iZY3jTUb1ymO8jQifxprPq5THOVpRH6Xx9evX1QDAAAAAADcAzzoAAAAAABuDh50AAAAAAA3x33Q7fy1Xskz7wIAAAAAeCXMB93EAwuPOgAAAACAOuqDbvJhhUcdAAAAAECNx9ef/+WDeMajavWgPjyOOONuAAAAAIDPhPr30PFzB96r0nfnow4PRgAAAAC8Gg/+L0Us8KADAAAAALgXpQfd8iRZn2Kpa0S+BfXmZDwrR+oyBgAAAAC4AukHndSjs9RWLM8USzzPQqvJapbOtRXLM8UAAAAAAJM89UHHPUvzdI9sTeVOrkU+AAAAAMAUh3/JVfM8LVvj6RGrjmPlWLoG93m+pQEAAAAAPJsPD7rFkcdLVJPtGd1TodI/unf3rAAAAAAAR0k/6EjnSE+euaadKeZYeoRWF2lWrGkrjvIBAAAAACZQH3QL+WDRHjBaDsHPPJdrEkvPQH05Wt7C8nmt9OmseQAAAAAAk5gPugV/uGiPmDMfNld/JOERBwAAAICr4j7oJOtRw9FyXpHPuDMAAAAA7sPjl8KDDgAAAAAAXI/H7//5J9UA4O5oP6PKNfyMK7ga+PGZB1+f6xB9FvisnkPpl1wBuAva/4FwDf8HA87kjB9P+PGZB1+f6xF9JvjM9vPuQbe+4ByeKH3pAXCVHxvWDFz/bD+Gr7TvjllkT+uOnV+Hbm9ev3POuyO/NutswfPAOXhf1+hrjs9kL2+/h077QnNN+vhggGT9mHjGj4voHs3j2jNmvCLTe6/7Cc0/CvXjfeUddK/ULSq5RDWfw2s7fc4g2j3ydyPv5mcrBn3W15PQ/EX0Ncdnspe330OnfaG5FvkAnEH0Y2r6x+T0j/nu/dPzL86egfrJ/2pU7q7OWc2/InwHbZ/I7xL17Ppduv13z/cMrv4ZfWYev//9P38LtC8y1yIfgDOIfkx1/S7TP+bPuP/KOyyvOh/ly/9qVHpX51gcqbkS0fy79+vePz1fxO75nsHVP6PPzOP3//RH1VjwL7z2IeCDeQ3W50ifJY+lL3PobGnS8/K4fsTneZqeQfbnvbKed6Z8S+O6lW/5VXi97CnPVp6ly7PE0hdenQXlZ2o9n+o5Wp6HVsN7Uazl7YbfLe+XXtXP5FQ86fM8TSc8n/fW8qTPczwvQ7feQ/aUZyvP0uVZYulEx49qgc/jn/79F9WQX1jtjC/+6yA/T+2zzeZIjXTpVeqJrm+RncXrvzzuW7GlRWdLI11DyyW4L3OrZ9K4ruV4egfqKf8rqehWrofXX3pH+h9FuyurcSw/6pW9y+pPHPWjuyLf0yp06y1k3+qZNK5rOZ5OdH1wHPWvLfE+SILOMgfcE+2zlFrm87ZyMv0tjdP1LbJ1Xl7V49oZ91eQfaIzZ3ma79VwsnlH4LNVZqzkRmR7He1/hLNmsvwjdWfeT1h+dFfUl8jmWXTrLWRf757laX52tiiv64PjfHjQVb7Y+GBeB+2zlFrm87ZyMv0tjdP1PVYtx8rR9EXV45pXy8nmeVg9SPd8L8eqk2TzqsjZKjNWciOyvY72P8JZM3n+8jieR/AcypMa56hP90m8HO7xHE3P0q33oN7e7F6OVSeJ8ro+OM6Hv4eOmxH4YF4H7bOUWubztnIy/S2N05mhSnW+qsc1r5aTzbPIzKjlSC2TY5HNq0J95X851t2V3Ayy9uz+VbL3RzNVZua52bpMnpdjedn7OVrNkT6cbr0H9c7Mncmx8PKiHtk7wDHeHnSZD5if8cG8FuvzjD7fzGdu5WT7cS1bI8nkSLJ3cU363r1ablSv9eOa5ntk8q0cea+Wl+m/8PKs3hG8hmKtj9Vb6uts5WbQ+vGzpVmcPU9F41h+1Ct7V1Tj6YtKTXTXkZoIq37FR/pJrB6Zu7L3e3lRj+wd4BjvHnQassDSwb2hz1T7fEnjcD/KyWoyX9M43JdEvkT29uqlz2ukx5G+litzNCJfI5ufvVeLObyOyORZeoSs0c4S7sscfpZ5GXgd9Ym0iEquBr9T9pLe2b6WI30i8heaT3VWLfdljvSkz4n8CKu+05PwevB7tZjD64goT54lkb/I5AAb9Q9FgM/HK/4PCf/nACY5+8cffjy/59W+HnfeJ5o9uxt+jPfAgw58+x8RofkAgDpn/u8J/9u8Lvz/PzW0Gkk279XB16EHHnQAAAAAADfHfdA987WMlzkAAAAAwDHMB93EA+vZd+IRCQAAAIBXQH3QTT50nnW3ds/SONLnRP4OMnNlmJgdAAAAAPt4/M9/+68P4lmPBurD44gz7s4g79HutWZZemXOar4Grz/ai+bozgIAAACAa/H4t//xh3fCmd/sea9K32c8OOQd2p3WHEuvzljNl/B6r1fmnu4sAAAAALgWH37J9cxv9tlHiGT3g0PrX9WqM1bzJbze65W5pzsLAAAAAK7F47e//e07IXosSLI+xVLXiHwN6ku1PJZYukTm8bPmEfzMfU3PwuulR7pEy1t4HgAAAADuR/pn6KQenaW2YnmmWOJ5Hpn+2d5aXtTf89c5qvfg9RRrPTRNkskBAAAAwH146oOOe5bm6RlWrVef6a3lSM3qs/RMvaVpUB7Pt2ozPbP3AgAAAOAelH4P3fIIzfO0bI2nZ1i1Xn3U25vJQsvjGukZTYPnUWzVZnpm7wUAAADAPfjvB93/+SBq3/CjR0BUk+0Z3ROx6q0eUe/K3d4dmpfVNHie1Z/I9MzeCwAAAIB78PiD+EMRC+sbPj0mCOnJM9e0M8UcS88Q9fd6n50v/XX2fA+t1xEv0gEAAABwT9S/WHjhPRQsbZ0Jfua5XJNYegbel2Lej8cavIaTyeO6zOF1Mq8C1WX6WB7pHJkDAAAAgPvx4ffQcfg3fO2b/5kPgt2PCzxeAAAAAPCquA86yXoUcbQcAAAAAADwXEoPOgAAAAAAcD3woAMAAAAAuDl40AEAAAAA3JwPD7qjvz+O/946jpb7WfG+NtIjeA7Pk/pZnNXf67Fz/i7d/a160iUyb5qz5rJ6XHVvojtfVN/tv5vufF49eV7ONN3Zovpu/91054vqu/13050vqu/2j3j3oOMXVS/V8q0eS/f6X90/gtaPa5Evz1p+l7P6r1qtnvRO753wuY7M6NVfdWdOd39i1Wr1Z/XfRXe+qL7bfzfd+bx6rd+RO3bizZ8hqu/23013vqi+23833fmi+m7/DG8PumiAKlZttNTV/aNEd0mkV62vcmb/VefVnjn3WXT3j+qvuDOnuz9n1cnaM/vvoDtfVN/tv5vufFHuZ9yfa93+u+nOF9V3+++mO19U3+2fZfRBp3F1/0y8u6Sn5Vqa19ci2z+CarzaI313090/qr/izpzu/gTVyNqz+u+iO19U3+2/m+58R3Z59f251u2/m+58UX23/26680X13f5Z0g+6FRP8TD5H0ymfcydfy6n6HM/XvIrm9baI+lNf0njMc7RY4nlTaDPJfQh+1nI1jfIJnncFtJm4JmfnMc/RYu1saVNE862Y4GctV9Mif5rM/AQ/y1zSuacR+c9Gm4drtBNpPJa5mhb502TmJ/hZy9W0yJ8mMz/Bz1qupkX+WZR+hi4akDjqLa7qazrXIp9rms6p9JLaUTL9+TnK13zC86aI9pFnz9O0TP4k0fzyHOV7tZ42RWY+fvY8TYv8aTLzefuss5fPNU2fxprVOnuepkX+NJn5vH2i+sifJjOft09UH/ln8fjuf333LcheuDRvkGjIu/qazrXIl1TusXSvf5Vs/6VlcrUcwvOmyOxEWiVXapzIfyaVnTK50dnSpsjOt7RKrhZ72hSVnSq5UiM8b4LKTpVcLfa0KSo7VXK12NOmqOxUydViT+tS/j10S/MGiYa8q790jayvoflWTSX3CNn+S/N0DS1XatNk56zspGmcyH8mlZ08XYN8rUZqU2TnW1olV4s9bYrKTpVcqXEi/5lUdqrkarGnTVHZqZKrxZ42RWWnSq4We1oXPOgElr+jb1az9OjOCpX5Mvd6OZn6Z2PtqmmVXC32tCkqO2XmljnZ/lNk51taJVeLPW2Kyk6VXC32tCkqO1VytdjTpqjsVMnVYk+borJTJVeLPa3L2y+5LioDWMNEQ97V13SudX1PI6J+pHs9PKL+kc/x/Kh2imi/jh+dr4A3v9Si+bv1E0Tz7fan6c4vtWr+NJV5d/jTdOfv+tN05+/6Z/D48r///4NusS6yhiGdYitPaqRL7uRrOWf7lKPphFe7iPwIq57rFHt5Wo7nXQVrLq5THOVZnuVfAWs+rlPs5Vk5mnYlrPm4TnGUpxH501jzcZ1iLy/yNP8KWLNxneIoTyPyp7Hm4zrFUZ5G5E9jzcd1iqM8jcjv8vjuD/+iGgAAAAAA4B48vvzj99ABAAAAAIB78vaHIgAAAAAAwD15/O6Pv6oGAAAAAAC4B49f//g71QAAAAAAAPfgwy+5Hv1TGFQn0XI/K97XRnqEl8O9s9jVm8/N0XIn6c7l1ZPn5UzTnS2q7/bfTXe+qL7bfzfd+aL6bv/ddOeL6rv9d9OdL6rv9t9Nd76ovts/4t2Djl9UvVTLt3os3et/df8IWj+udf0ziO7r8Iz5u3T39+q1fkfu2Ik3f4aovtt/N935ovpu/91054vqu/13050vqu/23013vqi+23833fmi+m7/DOV/KSKLVRstdXX/KNFdEulV66vs7i/Z2fsI3f2j+m7/3XTni+q7/XfTnS+q7/bfTXe+qL7bfzfd+aL6bv/ddOeL6rv9d9OdL6rv9s8y+qDTuLp/Jt5d0tNyLc3ra5HtfxY7ex+hu/+R+it9DXbv3+2/m+58UX23/26680X13f676c4X1Xf776Y7X1Tf7b+b7nxRfbd/lvSDbsUEP5PP0XTK59zJ13KqPsfzLY/rXo7X20Krkffx3jzWcqTH8bwptJm4RjuRxmOZ62mE500Qzb9igp+1XE2L/Gky8xP8rOVqWuRPk5mf4GctV9Mif5rM/AQ/a7maFvnTZOYn+FnL1bTInyYzP8HPWq6mRf5ZlH6GLhqQOOotruprOtcin2uazvH8TP0RtJ5S42fP8zRPnyQzPz97XqRp+jSZ+fnZ8zQt8qfJzOftE9VH/jSZ+bx9ovrInyYzn7dPVB/502Tm8/aJ6iN/msx83j5RfeSfRfmXXJfmDRINeVdf07kW+ZLKPUR0Xwetn6VVcjPaFajMX8mVGuF5E1R2quRqsadNUdmpkqvFnjZFZadKrhZ72hSVnSq5WuxpU1R2quRqsadNUdmpkqvFntYFDzqB5S9dI+traL5VU8k9Qrb/0jxdouVJ7QpkZ63spWmcyH8mlZ0quVrsaVNUdqrkarGnTVHZqZKrxZ42RWWnSq4We9oUlZ0quVrsaVNUdqrkarGndcGDTmD5O/pmNUuP7qxQma8zSzbv2WR3WlolV4s9bYrKTpVcLfa0KSo7VXK12NOmqOxUydViT5uislMlV4s9bYrKTpVcLfa0KSo7VXK12NO6vD3oFpUBrGGiIe/qazrXur6nWbqlWT0ieF10n/SjfE+7Ct5+Uqv6Uf4V8OaX2g5/mu78XX+a7vxdf5ru/F1/mu78XX+a7vxd/wzePegW6yJrGNIptvKkRrrkTr6Wc7ZPOZq+yNZbXgarnusUyzyuS4/naPpVsGbnOsVRnuV5OdNYs3Gd4ihPI/KnsebjOsVRnkbkT2PNx3WKozyNyJ/Gmo/rFEd5GpE/jTUf1ymO8jQifxprPq5THOVpRH6XDw86AAAAAABwL/CgAwAAAAC4OXjQAQAAAADcHDzoAAAAAABuDh50AAAAAAA358OD7uifwqA6iZb7WYm+NpHPczTvDI72pzqJlSf1q/Cs+a76Nbj657Mb7I/9j+xPdRIt98p0547qu/13050vqu/2j3j3oOMXVS/V8q0eS/f6X90/gtaPa5Evz1p+l05/LV9qnf7P4Fnzrd6vvP9V94t41v6RPwWfqTNftF/kT8Fnqs6n5Vs9ll7t/wz4TEfmi+q7/XfTnS+q7/bP8PagiwaoYtVGS13dP8qOWTTtKGf3l7W75+/yzPlW3yvtvjhrf15ztR09nrV/5E8RzZol2i/yp4hmrWLVvur+UX23/26680X13f5ZRh90Glf3z4Tfpd1b8bmm6RHZ/llk7dn9z+ZZ81HPK+2+OGv/q+2V5Vn7X/Xrg/3P2Z+wal91/6i+23833fmi+m7/LOkH3YoJfiafo+mUz7mTr+VUfY5Vr8Xa2dM0PSLqT31J47FE07PaFNF8Kyb4mXyZIz3ytfgKZOYl+FnzpWflSH8Sa14e87l5LH3pZfxptHm4JufmsfSll/Gn0ebhmpybxxJNp3yOzJlEm4drcm4ey1xNi/xpMvMT/Kzlalrkn0XpZ+iiAYmj3uKqvqZzLfK5pumE5We1o2T687N3d6aXpU2RmY+fPc/SvPppzpq/olu5E2Tm42dr9minyJ9Cm0tq/GztEe0X+VNoc0mNn709jnqTaHNJjZ89T9Mif5rMfN4+UX3kn0X5l1yX5g0SDXlXX9O5FvmSar9q/yrZ/kvz7rW8bP8psvMtrZKrxdp5mspO3uyWl+0/RXa+pXlzRztF/hTWrprm7RDtF/lTWLtqmrdDtF/kT2HtqmmVXC32tCkqO1VytdjTuuBBJ7D8pWtkfQ3ua7kVv0u2/9K8ey0v23+K7HxL83RJ5C94nym0OSzNm9nyqE6i5U6gzWJp3tzRTpE/hbWrpnk7RPtF/hTWrprm7RDtF/lTWLtqWiVXiz1tispOlVwt9rQujz//jAcdx/J39OVa1++S7b80717Ly/afIjvf0s7YpZq/m+xOS/Nmtzyv5gpYu2qat0u0Z+RPYe2qad4O0X6RP4W1q6Z5O0T7Rf4U1q6aVsnVYk+borJTJVeLPa3L4+d//d3boTKANUw05F19Tefabl+etXzSLS8i6h/5nr7I1E8Szef5Ub7E86bw9pOaNX9Ft3KniPaLfE8nIn+SaL/I93Qi8ieJ9ot8Tycif5Jov93+NN35u/4ZPL5+/fWdsC6yhiGdYitPaqRL7uRrOc/2eY7mLSI/wqrnOsVWntQ4Vt1V8PYinWKZx3XpWTlW3hTWTFynmOdxTXpWjvSvgDUb1ynmeVyTXsa/CtZsXKeY53FNehn/KlizcZ1iK09qpEu0vGms2bhOcZSnEfnTWPNxneIoTyPyu7z9HjoAAAAAAHBP8KADAAAAALg5j5+++041AAAAAADAPXh8/fpFNRY7f61X8sy7AAAAAABeCfNBN/HAwqMOAAAAAKCO+qCbfFjhUQcAAAAAUGPbg271oD48jjjjbgAAAACAz8SHB92ZDyreq9IXjzoAAAAAgCy/+dv/A5WhVQbpLHV5AAAAAElFTkSuQmCC" alt="赋值变量3后内存">

显然我们的猜测是正确的!

实验:使用GDB查看结构体在内存中的存储方式的更多相关文章

  1. C语言结构体在内存中的存储情况探究------内存对齐

    条件(先看一下各个基本类型都占几个字节): void size_(){ printf("char类型:%d\n", sizeof(char)); printf("int类 ...

  2. <转载>浅谈C/C++的浮点数在内存中的存储方式

    C/C++浮点数在内存中的存储方式 任何数据在内存中都是以二进制的形式存储的,例如一个short型数据1156,其二进制表示形式为00000100 10000100.则在Intel CPU架构的系统中 ...

  3. C语言中浮点数在内存中的存储方式

    关于多字节数据类型在内存中的存储问题 //////////////////////////////////////////////////////////////// int ,short 各自是4. ...

  4. QList介绍(QList比QVector更快,这是由它们在内存中的存储方式决定的。QStringList是在QList的基础上针对字符串提供额外的函数。at()操作比操作符[]更快,因为它不需要深度复制)非常实用

    FROM:http://apps.hi.baidu.com/share/detail/33517814 今天做项目时,需要用到QList来存储一组点.为此,我对QList类的说明进行了如下翻译. QL ...

  5. Float在内存中的存储方式及IEC61131处理

    Float在内存中的存储方式及IEC61131处理 1,fp32(32bits float)类型数据在存储器中占用4Bytes存储,且遵循IEEE-754标准: 一个浮点数分三部分组成: 符号位s(1 ...

  6. 数据在内存中的存储方式( Big Endian和Little Endian的区别 )(x86系列则采用little endian方式存储数据)

    https://www.cnblogs.com/renyuan/archive/2013/05/26/3099766.html 1.故事的起源 “endian”这个词出自<格列佛游记>.小 ...

  7. c语言结构体在内存中存储,字节对齐

    注意: 出于效率的考虑,C语言引入了字节对齐机制,一般来说,不同的编译器字节对齐机制有所不同,但还是有以下3条通用准则: (1)结构体变量的大小能够被其最宽基本类型成员的大小所整除: (2)结构体每个 ...

  8. C/C++浮点数在内存中的存储方式

    一.内存表示 任何数据在内存中都是以二进制的形式存储的,浮点数的表示是把一个数的有效数字和数的范围在计算机的一个存储单元中分别予以表示,数的小数点位置随比例因子的不同而在一定范围内自由浮动.如下图是3 ...

  9. float和double在内存中的存储方式

    本文转载于:http://wenku.baidu.com/link?url=ARfMiXVHCwCZJcqfA1gfeVkMOj9RkLlR9fIexbgs9gDdV8rIS48A1_xe1y6YgX ...

随机推荐

  1. 一文带你深入了解 redis 复制技术及主从架构

    主从架构可以说是互联网必备的架构了,第一是为了保证服务的高可用,第二是为了实现读写分离,你可能熟悉我们常用的 MySQL 数据库的主从架构,对于我们 redis 来说也不意外,redis 数据库也有各 ...

  2. 【2018寒假集训 Day2】【动态规划】垃圾陷阱(挖坑等填,未完成)

    垃圾陷阱 (well) 卡门--农夫约翰极其珍视的一条Holsteins奶牛--已经落了到"垃圾井"中."垃圾井"是农夫们扔垃圾的地方,它的深度为D (2 &l ...

  3. 数据库求闭包,求最小函数依赖集,求候选码,判断模式分解是否为无损连接,3NF,BCNF

    1.说白话一点:闭包就是由一个属性直接或间接推导出的所有属性的集合. 例(1):   设有关系模式R(U,F),其中U={A,B,C,D,E,I},F={A→D,AB→E,BI→E,CD→I,E→C} ...

  4. C语言基础 -- 变量

    常用变量类型 ​​ 地址 小端 低地址保存低位,高地址保存高位 常用于 PC(复杂指令集) 大端 低地址保存高位,高地址保存低位 常用于 ARM/手机/网络(精简指令集)

  5. JAVA,Python代码是编译执行还是解释执行?

    转载地址:http://blog.csdn.net/zv3e189os5c0tsknrbcl/article/details/78661641 有人在讨论 Python 代码是编译执行还是解释执行?这 ...

  6. python内置的进制转换方法

    python进制转换方法总结表: ↓ 2进制 8进制 10进制 16进制 2进制 - bin(int(x, 8)) bin(int(x, 10)) bin(int(x, 16)) 8进制 oct(in ...

  7. “word无法创建工作文件,请检查临时环境变量”的解决办法

    问       题:word无法创建工作文件,请检查临时环境变量 解决方法: 1.运行regedit,打开注册表: 2.找到 ⑴.HKEY_USERS\S-1-5-19\Software\Micros ...

  8. 你真的了解foreach吗?

    引言 有C#基础的,当问到循环有哪些,会毫不犹豫的说出的for.do while.foreach及while这几种,但是到具体实际开发中,我们遇到一些问题,比如:到底选择哪种?为什么选择这种?哪种好像 ...

  9. Java继承、构造、重写

    Music mu=new Music(); Musc m=mu;//地址一样   继承:Java只支持单继承,不支持多继承. Java支持多层(重)继承(继承体系). 如果类之间存在着:is a 的关 ...

  10. TensorFlow2.0(11):tf.keras建模三部曲

    .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px so ...