Spark RDD API具体解释(一) Map和Reduce
RDD是什么?
RDD是Spark中的抽象数据结构类型,不论什么数据在Spark中都被表示为RDD。从编程的角度来看。RDD能够简单看成是一个数组。和普通数组的差别是。RDD中的数据是分区存储的,这样不同分区的数据就能够分布在不同的机器上。同一时候能够被并行处理。因此。Spark应用程序所做的无非是把须要处理的数据转换为RDD。然后对RDD进行一系列的变换和操作从而得到结果。本文为第一部分,将介绍Spark RDD中与Map和Reduce相关的API中。
怎样创建RDD?
RDD能够从普通数组创建出来。也能够从文件系统或者HDFS中的文件创建出来。
举例:从普通数组创建RDD。里面包括了1到9这9个数字,它们分别在3个分区中。
scala> val a = sc.parallelize(1 to 9, 3)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at <console>:12
举例:读取文件README.md来创建RDD,文件里的每一行就是RDD中的一个元素
scala> val b = sc.textFile("README.md")
b: org.apache.spark.rdd.RDD[String] = MappedRDD[3] at textFile at <console>:12
尽管还有别的方式能够创建RDD,但在本文中我们主要使用上述两种方式来创建RDD以说明RDD的API。
map
map是对RDD中的每一个元素都运行一个指定的函数来产生一个新的RDD。不论什么原RDD中的元素在新RDD中都有且仅仅有一个元素与之相应。
举例:
scala> val a = sc.parallelize(1 to 9, 3)
scala> val b = a.map(x => x*2)
scala> a.collect
res10: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9)
scala> b.collect
res11: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18)
上述样例中把原RDD中每一个元素都乘以2来产生一个新的RDD。
mapPartitions
mapPartitions是map的一个变种。
map的输入函数是应用于RDD中每一个元素,而mapPartitions的输入函数是应用于每一个分区。也就是把每一个分区中的内容作为总体来处理的。
它的函数定义为:
def mapPartitions[U: ClassTag](f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]
f即为输入函数,它处理每一个分区里面的内容。每一个分区中的内容将以Iterator[T]传递给输入函数f,f的输出结果是Iterator[U]。
终于的RDD由全部分区经过输入函数处理后的结果合并起来的。
举例:
scala> val a = sc.parallelize(1 to 9, 3)
scala> def myfunc[T](iter: Iterator[T]) : Iterator[(T, T)] = {
var res = List[(T, T)]()
var pre = iter.next while (iter.hasNext) {
val cur = iter.next;
res .::= (pre, cur) pre = cur;
}
res.iterator
}
scala> a.mapPartitions(myfunc).collect
res0: Array[(Int, Int)] = Array((2,3), (1,2), (5,6), (4,5), (8,9), (7,8))
上述样例中的函数myfunc是把分区中一个元素和它的下一个元素组成一个Tuple。由于分区中最后一个元素没有下一个元素了,所以(3,4)和(6,7)不在结果中。
mapPartitions还有些变种,比方mapPartitionsWithContext。它能把处理过程中的一些状态信息传递给用户指定的输入函数。
还有mapPartitionsWithIndex。它能把分区的index传递给用户指定的输入函数。
mapValues
mapValues顾名思义就是输入函数应用于RDD中Kev-Value的Value,原RDD中的Key保持不变。与新的Value一起组成新的RDD中的元素。因此,该函数仅仅适用于元素为KV对的RDD。
举例:
scala> val a = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", " eagle"), 2)
scala> val b = a.map(x => (x.length, x))
scala> b.mapValues("x" + _ + "x").collect
res5: Array[(Int, String)] = Array((3,xdogx), (5,xtigerx), (4,xlionx),(3,xcatx), (7,xpantherx), (5,xeaglex))
mapWith
mapWith是map的另外一个变种,map仅仅须要一个输入函数,而mapWith有两个输入函数。它的定义例如以下:
def mapWith[A: ClassTag, U: ](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => U): RDD[U]
- 第一个函数constructA是把RDD的partition index(index从0開始)作为输入,输出为新类型A。
- 第二个函数f是把二元组(T, A)作为输入(当中T为原RDD中的元素,A为第一个函数的输出)。输出类型为U。
举例:把partition index 乘以10,然后加上2作为新的RDD的元素。
val x = sc.parallelize(List(1,2,3,4,5,6,7,8,9,10), 3)
x.mapWith(a => a * 10)((a, b) => (b + 2)).collect
res4: Array[Int] = Array(2, 2, 2, 12, 12, 12, 22, 22, 22, 22)
flatMap
与map类似,差别是原RDD中的元素经map处理后仅仅能生成一个元素。而原RDD中的元素经flatmap处理后可生成多个元素来构建新RDD。
举例:对原RDD中的每一个元素x产生y个元素(从1到y,y为元素x的值)
scala> val a = sc.parallelize(1 to 4, 2)
scala> val b = a.flatMap(x => 1 to x)
scala> b.collect
res12: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4)
flatMapWith
flatMapWith与mapWith非常类似。都是接收两个函数,一个函数把partitionIndex作为输入,输出是一个新类型A。另外一个函数是以二元组(T,A)作为输入,输出为一个序列。这些序列里面的元素组成了新的RDD。它的定义例如以下:
def flatMapWith[A: ClassTag, U: ClassTag](constructA: Int => A, preservesPartitioning: Boolean = false)(f: (T, A) => Seq[U]): RDD[U]
举例:
scala> val a = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 3)
scala> a.flatMapWith(x => x, true)((x, y) => List(y, x)).collect
res58: Array[Int] = Array(0, 1, 0, 2, 0, 3, 1, 4, 1, 5, 1, 6, 2, 7, 2,
8, 2, 9)
flatMapValues
flatMapValues类似于mapValues,不同的在于flatMapValues应用于元素为KV对的RDD中Value。每一个一元素的Value被输入函数映射为一系列的值。然后这些值再与原RDD中的Key组成一系列新的KV对。
举例
scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> val b = a.flatMapValues(x=>x.to(5))
scala> b.collect
res3: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (3,4), (3,5))
上述样例中原RDD中每一个元素的值被转换为一个序列(从其当前值到5),比方第一个KV对(1,2), 其值2被转换为2,3,4,5。
然后其再与原KV对中Key组成一系列新的KV对(1,2),(1,3),(1,4),(1,5)。
reduce
reduce将RDD中元素两两传递给输入函数。同一时候产生一个新的值,新产生的值与RDD中下一个元素再被传递给输入函数直到最后仅仅有一个值为止。
举例
scala> val c = sc.parallelize(1 to 10)
scala> c.reduce((x, y) => x + y)
res4: Int = 55
上述样例对RDD中的元素求和。
reduceByKey
顾名思义,reduceByKey就是对元素为KV对的RDD中Key同样的元素的Value进行reduce,因此。Key同样的多个元素的值被reduce为一个值。然后与原RDD中的Key组成一个新的KV对。
举例:
scala> val a = sc.parallelize(List((1,2),(3,4),(3,6)))
scala> a.reduceByKey((x,y) => x + y).collect
res7: Array[(Int, Int)] = Array((1,2), (3,10))
上述样例中,对Key同样的元素的值求和,因此Key为3的两个元素被转为了(3,10)。
Reference
本文中的部分样例来自:http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html
Spark RDD API具体解释(一) Map和Reduce的更多相关文章
- Spark RDD API详解(一) Map和Reduce
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不同 ...
- Spark RDD API扩展开发
原文链接: Spark RDD API扩展开发(1) Spark RDD API扩展开发(2):自定义RDD 我们都知道,Apache Spark内置了很多操作数据的API.但是很多时候,当我们在现实 ...
- Spark RDD API详解之:Map和Reduce
RDD是什么? RDD是Spark中的抽象数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看, RDD可以简单看成是一个数组.和普通数组的区别是,RDD中的数据是分区存储的,这样不 ...
- Spark RDD API(scala)
1.RDD RDD(Resilient Distributed Dataset弹性分布式数据集)是Spark中抽象的数据结构类型,任何数据在Spark中都被表示为RDD.从编程的角度来看,RDD可以简 ...
- Spark RDD 操作
1. Spark RDD 创建操作 1.1 数据集合 parallelize 可以创建一个能够并行操作的RDD.其函数定义如下: ) scala> sc.defaultParallelism ...
- Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、lookup(一)
1.以本地模式实战map和filter 2.以集群模式实战textFile和cache 3.对Job输出结果进行升和降序 4.union 5.groupByKey 6.join 7.reduce 8. ...
- (转)Spark JAVA RDD API
对API的解释: 1.1 transform l map(func):对调用map的RDD数据集中的每个element都使用func,然后返回一个新的RDD,这个返回的数据集是分布式的数据集 l ...
- 且谈 Apache Spark 的 API 三剑客:RDD、DataFrame 和 Dataset
作者:Jules S. Damji 译者:足下 本文翻译自 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets ,翻译已 ...
- Spark RDD/Core 编程 API入门系列之动手实战和调试Spark文件操作、动手实战操作搜狗日志文件、搜狗日志文件深入实战(二)
1.动手实战和调试Spark文件操作 这里,我以指定executor-memory参数的方式,启动spark-shell. 启动hadoop集群 spark@SparkSingleNode:/usr/ ...
随机推荐
- JavaScript—window对象使用
window对象是JavaScript浏览器对象模型中的顶层对象,包含多个常用方法和属性: 1. 打开新窗口 window.open(pageURL,name,parameters) 其中:pageU ...
- c - 折半查找(二分法检索)
#include <stdio.h> #define LEN 10 /* 折半查找(二分法检索). */ int index_of(int *a, int k) { ; ; int m; ...
- cas sso单点登录系列2:cas客户端和cas服务端交互原理动画图解,cas协议终极分析
转:http://blog.csdn.net/ae6623/article/details/8848107 1)PPT流程图:ppt下载:http://pan.baidu.com/s/1o7KIlom ...
- Android动画 fillAfter和fillBefore
fillBefore是指动画结束时画面停留在此动画的第一帧; fillAfter是指动画结束是画面停留在此动画的最后一帧. java代码设置如下: /*****动画结束时,停留在最后一帧******* ...
- Java学习----对象的状态和行为
1.什么是对象 对象是已知的事物 对象会执行动作 类是对象的蓝图 2.对象的属性和状态 使用变量来描述 private String name; private int age; private St ...
- Win7下安装Ubuntu双系统常见问题
[转自己以前的文章] 导航: ● win7下硬盘安装ubuntu常见问题 ● win7下u盘安装ubuntu常见问题 吐槽: Ubuntu的安装花了我将近15个小时,网上常见的.不常见的问题基本我都 ...
- js学习笔记之:数组(一)
今天来学习一下js中的一维数组.二维数组,以及数组的赋值.遍历.删除.排序等操作: 1 数组的声明 js提供了一个数组对象Array,默认是一维数组,其申明的方法如下: var aCity = ...
- Razor引擎的转换数据类型
AsInt() 把字符串转换为整数. if (myString.IsInt()) IsInt() {myInt=myString.AsInt();} AsFloat() 把字符串转换为浮点数. if ...
- JS indexOf() lastIndexOf()与substring()截取字符串的区别
1. String.IndexOf 方法 (value[,startIndex]) value:要查找的 Unicode 字符. 必选项startIndex:搜索起始位置. 可选项 不写从开头查找 ...
- C++的类为什么要用指针
这个问题原来是这样的: C++的对象和C#不同,C++的对象是放在栈区的,C#的对象是引用类型. 这就意味着,C++进行类型转换的时候,由于调用了复制构造函数,其转换后,对象会丢弃一部分信息. 派生类 ...