基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题
 收藏
 关注
斐波那契数列的定义如下:
 
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)
 
(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可。
 
Input
输入1个数n(1 <= n <= 10^18)。
Output
输出F(n) % 1000000009的结果。
运用矩阵乘法去做,有矩阵,可以矩阵快速幂求出转移矩阵即可得到结果。

#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
typedef long long LL;
int n = ;
struct mat
{
LL a[][];
};
mat mul(mat m1,mat m2)
{
mat ans;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
LL temp = ;
for(int k=;k<n;k++)
{
temp+=m1.a[i][k]*m2.a[k][j];
}
ans.a[i][j] = temp % ;
}
return ans;
}
mat pow(mat m,LL b)
{
if(b<=)
return m;
mat temp = pow(m,b/);
if(b&)
return mul(mul(temp,temp),m);
else
return mul(temp,temp);
}
int main()
{
LL num;
mat beg;
beg.a[][]=beg.a[][]=beg.a[][]=;beg.a[][]=;
cin>>num;
cout<<pow(beg,num-).a[][]<<endl;
return ;
}
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
 收藏
 关注
在2*N的一个长方形方格中,用一个1*2的骨牌排满方格。

 
问有多少种不同的排列方法。
 
例如:2 * 3的方格,共有3种不同的排法。(由于方案的数量巨大,只输出 Mod 10^9 + 7 的结果)
Input
输入N(N <= 1000)
Output
输出数量 Mod 10^9 + 7
Input示例
3
Output示例
3

显然,N=1时一种方法,N=2时有两种方法。
当N>2,可分为两种情况,1是竖着放,那么方法数目为前n-1个的结果,f(n-1)
2是两个横着放,这样占用了两个格子,方法数目是前n-2个结果 f(n-2)
f(n)=f(n-1)+f(n-2),f(1)=1,f(2)=2;
由上面程序略作修改
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
typedef long long LL;
int n = ;
#define M 1000000007
struct mat
{
LL a[][];
};
mat mul(mat m1,mat m2)
{
mat ans;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
LL temp = ;
for(int k=;k<n;k++)
{
temp+=m1.a[i][k]*m2.a[k][j];
}
ans.a[i][j] = temp%M;
}
return ans;
}
mat pow(mat m,LL b)
{
if(b<=)
return m;
mat temp = pow(m,b/);
if(b&)
return mul(mul(temp,temp),m);
else
return mul(temp,temp);
}
int main()
{
LL num;
mat beg;
beg.a[][]=beg.a[][]=beg.a[][]=;beg.a[][]=;
cin>>num;
mat tmp;
tmp.a[][]=,tmp.a[][]=tmp.a[][]=,tmp.a[][]=;
mat r = pow(beg,num-);
mat as=mul(tmp,r);
cout<<as.a[][]<<endl;
return ;
}
基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
 收藏
 关注
有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
给出A,B和N,求f(n)的值。
 
Input
输入3个数:A,B,N。数字之间用空格分割。(-10000 <= A, B <= 10000, 1 <= N <= 10^9)
Output
输出f(n)的值。

同样思路用矩阵做,注意避免负数的出现 (ans+7)%7.只需把递归式中系数修改。
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
typedef long long LL;
int n = ;
#define M 1000000007
struct mat
{
LL a[][];
};
mat mul(mat m1,mat m2)
{
mat ans;
for(int i=;i<n;i++)
for(int j=;j<n;j++)
{
LL temp = ;
for(int k=;k<n;k++)
{
temp+=m1.a[i][k]*m2.a[k][j] ;
}
ans.a[i][j] = (temp+)%;
}
return ans;
}
mat pow(mat m,LL b)
{
if(b<=)
return m;
mat temp = pow(m,b/);
if(b&)
return mul(mul(temp,temp),m);
else
return mul(temp,temp);
}
int main()
{
LL num,t1,t2;
cin>>t1>>t2>>num;
mat beg;
beg.a[][]=t1,beg.a[][]=t2,beg.a[][]=;beg.a[][]=;
mat r = pow(beg,num-);
cout<<(r.a[][]+r.a[][]+)%<<endl;
return ;
}

斐波那契数列 51nod的更多相关文章

  1. 51Nod——T 1242 斐波那契数列的第N项

    https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 基准时间限制:1 秒 空间限制:131072 KB 分值: 0  ...

  2. (矩阵快速幂)51NOD 1242斐波那契数列的第N项

    斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2)   (1, 1, 2, 3, 5, 8, 13, 21, ...

  3. 1242 斐波那契数列的第N项

    1242 斐波那契数列的第N项  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题   斐波那契数列的定义如下:   F(0) = 0 F(1) = 1 F(n) = F( ...

  4. 斐波那契数列的第N项

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1242 题目: 斐波那契数列的定义如下:   F(0) = 0 ...

  5. C#求斐波那契数列第30项的值(递归和非递归)

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  6. 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)

    对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...

  7. js中的斐波那契数列法

    //斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...

  8. 剑指Offer面试题:8.斐波那契数列

    一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...

  9. 算法: 斐波那契数列C/C++实现

    斐波那契数列: 1,1,2,3,5,8,13,21,34,....     //求斐波那契数列第n项的值 //1,1,2,3,5,8,13,21,34... //1.递归: //缺点:当n过大时,递归 ...

随机推荐

  1. Effective java-泛型思维导图

  2. oracle 添加表分区

    alter table DF_WRITE_FILES_H add partition DF_WRITE_FILES_H96 values less than (201512) tablespace T ...

  3. 学习日记_SSH框架web.xml配置文件篇

    1.参考一:http://www.blogjava.net/yxhxj2006/archive/2012/07/09/382632.html 2.参考二: <!-- web 容器启动spring ...

  4. 33.Spring整合Struts2.md

    [toc] 1.搭建环境 在idea下可以在创建module时候选择,注意WEB-INF下的classes和lib两个目录需要手动创建,并且对应的配置文件和依赖的lib需要手动拷贝到这两个文件夹下 2 ...

  5. 设置Imindmap默认字体

    创建一个新的字体样式 根据如下步骤创建新的字体样式: 1.打开一个mindmap,选中工具栏上的 [样式][Styles ]. 2.选择 Font > Create New Font Optio ...

  6. [转]C++基本功和 Design Pattern系列 ctor & dtor

    今天Aear讲的是class.ctor 也就是constructor, 和  class.dtor, destructor. 相信大家都知道constructor 和 destructor是做什么用的 ...

  7. USACO5.4-TeleCowmunication

    题目大意:给出一个无向图,要求删除尽量少的点,使给定的2点间不再连通,并输出字典序最小的方案题型:图论-网络流此题难点在于建图,后面就是套网络流的模板.将点看成边,例如第i个点可以看成一条有向边< ...

  8. MFC框架类、文档类、视图类相互访问的方法

    1.获取应用程序指针 CMyApp* pApp=(CMyApp*)AfxGetApp(); 2.获取主框架指针 CWinApp 中的公有成员变量 m_pMainWnd 就是主框架的指针 CMainFr ...

  9. MTP设备无法安装驱动的解决办法

    1,进入设备管理器右击带黄色问号的MTP,选择“属性”,“详细信息”“设备范例 ID”(用Ctrl+C复制). 2,找到c:\windows\inf\wpdmtp.inf打开(或者通过运行打开),找到 ...

  10. linux常用svn命令(转载)

     原地址:http://www.rjgc.net/control/content/content.php?nid=4418       1.将文件checkout到本地目录svn checkout p ...