I - Information Entropy

Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu

Submit Status

Description

Information Theory is one of the most popular courses in Marjar University. In this course, there is an important chapter about information entropy.

Entropy is the average amount of information contained in each message received. Here, a message stands for an event, or a sample or a character drawn from a distribution or a data stream. Entropy thus characterizes our uncertainty about our source of information. The source is also characterized by the probability distribution of the samples drawn from it. The idea here is that the less likely an event is, the more information it provides when it occurs.

Generally, "entropy" stands for "disorder" or uncertainty. The entropy we talk about here was introduced by Claude E. Shannon in his 1948 paper "A Mathematical Theory of Communication". We also call it Shannon entropy or information entropy to distinguish from other occurrences of the term, which appears in various parts of physics in different forms.

Named after Boltzmann's H-theorem, Shannon defined the entropy Η (Greek letter Η, η) of a discrete random variable X with possible values {x1, x2, ..., xn} and probability mass function P(X) as:

H(X)=E(−ln(P(x)))

Here E is the expected value operator. When taken from a finite sample, the entropy can explicitly be written as

H(X)=−∑i=1nP(xi)log b(P(xi))

Where b is the base of the logarithm used. Common values of b are 2, Euler's number e, and 10. The unit of entropy is bit for b = 2, nat for b = e, and dit (or digit) for b = 10 respectively.

In the case of P(xi) = 0 for some i, the value of the corresponding summand 0 logb(0) is taken to be a well-known limit:

0log b(0)=limp→0+plog b(p)

Your task is to calculate the entropy of a finite sample with N values.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer N (1 <= N <= 100) and a string S. The string S is one of "bit", "nat" or "dit", indicating the unit of entropy.

In the next line, there are N non-negative integers P1P2, .., PNPi means the probability of the i-th value in percentage and the sum of Piwill be 100.

Output

For each test case, output the entropy in the corresponding unit.

Any solution with a relative or absolute error of at most 10-8 will be accepted.

Sample Input

3
3 bit
25 25 50
7 nat
1 2 4 8 16 32 37
10 dit
10 10 10 10 10 10 10 10 10 10

Sample Output

1.500000000000
1.480810832465
1.000000000000 按照题目中所给的第二个公式求出结果,当字符为“bit”时log的底数为2当字符为“nat”时底数为e字符为“dit”时底数为10
注意所给数据中出现0时要把0 排除
注:求log₂X,log10X,lnx 直接调用math头文件中的log2(),log10(),log()即可
#include <iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#define maxn 110
using namespace std;
int main()
{
int t,n;
double a[maxn];
double sum;
char s[4];
scanf("%d",&t);
while(t--)
{
sum=0;
scanf("%d %s",&n,s);
for(int i=1;i<=n;++i)
scanf("%lf",&a[i]);
if(strcmp(s,"bit")==0)
{
for(int i=1;i<=n;++i)
{
if(a[i]!=0)
sum-=(a[i]*0.01*((log10(a[i]*0.01)/log10(2))));
}
}
else if(strcmp(s,"nat")==0)
{
for(int i=1;i<=n;++i)
{
if(a[i]!=0)
sum-=(a[i]*0.01*log(a[i]*0.01));
}
}
else if(strcmp(s,"dit")==0)
{
for(int i=1;i<=n;++i)
{
if(a[i]!=0)
sum-=(a[i]*0.01*log10(a[i]*0.01));
}
}
printf("%.12lf\n",sum);
}
return 0;
}

  

2014 牡丹江现场赛 i题 (zoj 3827 Information Entropy)的更多相关文章

  1. zoj 3827(2014牡丹江现场赛 I题 )

    套公式 Sample Input 33 bit25 25 50 //百分数7 nat1 2 4 8 16 32 3710 dit10 10 10 10 10 10 10 10 10 10Sample ...

  2. zoj 3820(2014牡丹江现场赛B题)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=5374 思路:题目的意思是求树上的两点,使得树上其余的点到其中一个点的 ...

  3. zoj 3819(2014牡丹江现场赛 A题 )

    题意:给出A班和B班的学生成绩,如果bob(A班的)在B班的话,两个班级的平均分都会涨.求bob成绩可能的最大,最小值. A班成绩平均值(不含BOB)>A班成绩平均值(含BOB) &&a ...

  4. ZOJ 3827 Information Entropy (2014牡丹江区域赛)

    题目链接:ZOJ 3827 Information Entropy 依据题目的公式算吧,那个极限是0 AC代码: #include <stdio.h> #include <strin ...

  5. ZOJ 3827 Information Entropy(数学题 牡丹江现场赛)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do? problemId=5381 Information Theory is one of t ...

  6. 【解题报告】牡丹江现场赛之ABDIK ZOJ 3819 3820 3822 3827 3829

    那天在机房做的同步赛,比现场赛要慢了一小时开始,直播那边已经可以看到榜了,所以上来就知道A和I是水题,当时机房电脑出了点问题,就慢了好几分钟,12分钟才A掉第一题... A.Average Score ...

  7. 2014ACM/ICPC亚洲区域赛牡丹江站现场赛-I ( ZOJ 3827 ) Information Entropy

    Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Information ...

  8. ZOJ 3827 Information Entropy 水题

    Information Entropy Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://acm.zju.edu.cn/onlinejudge/sh ...

  9. ZOJ 3827 Information Entropy 水

    水 Information Entropy Time Limit: 2 Seconds      Memory Limit: 65536 KB      Special Judge Informati ...

随机推荐

  1. iOS崩溃报告获取二

    // // JKExceptionHandler.h // JKExceptionHandler // // Created by Jack on 16/9/7. // Copyright © 201 ...

  2. 不知道的陷阱:C#委托和事件的困惑

    转载网址:http://www.cnblogs.com/buptzym/archive/2013/03/15/2962300.html 不知道的陷阱:C#委托和事件的困惑   一. 问题引入 通常,一 ...

  3. Lucene 排序 Sort与SortField

    在sql语句中,有升序和降序排列.在Lucene中,同样也有. Sort里的属性 SortField里的属性 含义 Sort.INDEXORDER SortField.FIELD_DOC 按照索引的顺 ...

  4. boost::thread 线程锁

    1.boost锁的概述: boost库中提供了mutex类与lock类,通过组合可以轻易的构建读写锁与互斥锁. 2.mutex对象类(主要有两种): 1.boost::mutex(独占互斥类) --& ...

  5. 无线端web开发学习总结

    无线web开发之前要做一些准备工作:一.必需的reset样式库1.其中的重点是盒模型box-sizing:由原来pc端的content-box改为border-box. *, *:before, *: ...

  6. 国内国外最好的java开发论坛及站点 [转]

    国内: www.chinajavaworld.com -论坛人很多,高手也多,不过好像都在潜水    www.cn-java.com -也很不错,文章很好,但是就是商业性浓了点.    www.chi ...

  7. bootstrap 下 标签页跳转总结

    最近遇到一个问题,是关于bootstrap中的标签页实现上的一些功能实现,现总结一下. 问题描述:点击其他标签页后,如何在点击搜索按钮后自动跳转到第一个标签页.如下图 通过对bootstrap框架里的 ...

  8. 精通 Oracle+Python,第 7 部分:面向服务的 Python 架构

    面向服务的架构 (SOA) 在当今的业务战略中具有至关重要的作用.混搭企业组件已成为所有任务关键的企业应用程序的标准要求,从而确保在企业架构的各层实现顺畅的服务编排.对此,Python 是一个不错的选 ...

  9. iOS: XCode6 beta 6 错误

    在使用XCode6 Beta6时, 遇到"__TFSs15_arrayForceCastU___FGSaQ__GSaQ0__"错误: 在http://stackoverflow.c ...

  10. 如何在eclips下将一段代码抽取为方法Extract Method

    最近读了读关于重构的文章,做了个小总结(在编程思想目录下<从文章"避免复制与粘贴"到文章"Extract Method"的反思 系列>). 然后因为 ...