POJ 1775 (ZOJ 2358) Sum of Factorials
Description
John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematician who made important contributions to the foundations of mathematics, logic, quantum physics,meteorology, science, computers, and game theory. He was noted for a phenomenal memory and the speed with which he absorbed ideas and solved problems. In 1925 he received a B.S. diploma in chemical engineering from Zurich Institute and in 1926 a Ph.D. in mathematics from the University of Budapest. His Ph.D. dissertation on set theory was an important contribution to the subject. At the age of 20, von Neumann proposed a new definition of ordinal numbers that was universally adopted. While still in his twenties, he made many contributions in both pure and applied mathematics that established him as a mathematician of unusual depth. His Mathematical Foundations of Quantum Mechanics (1932) built a solid framework for the new scientific discipline. During this time he also proved the mini-max theorem of GAME THEORY. He gradually expanded his work in game theory, and with coauthor Oskar Morgenstern he wrote Theory of Games and Economic Behavior (1944).
There are some numbers which can be expressed by the sum of factorials. For example 9,9=1!+2!+3! Dr. von Neumann was very interested in such numbers. So, he gives you a number n, and wants you to tell him whether or not the number can be expressed by the sum of some factorials.
Well, it’s just a piece of cake. For a given n, you’ll check if there are some xi, and let n equal to Σ1<=i<=txi!. (t >=1 1, xi >= 0, xi = xj iff. i = j). If the answer is yes, say “YES”; otherwise, print out “NO”.
Input
You will get several non-negative integer n (n <= 1,000,000) from input file. Each one is in a line by itself.
The input is terminated by a line with a negative integer.
Output
For each n, you should print exactly one word (“YES” or “NO”) in a single line. No extra spaces are allowed.
Sample Input
9
-1
Sample Output
YES
注意:0的阶乘是1;(输入0,输出NO)
不是输入-1结束,而是输入负数结束程序;
题目要求不是连续阶乘和;
例如:4=0!+1!+2!=1+1+2
输出 YES;
7=3!+1!;
输出 YES;
我这里的思路是:
从不大于n的最大数开始减,如果能减到n为0,输出YES,否则
输出NO。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[10];
void df(){
for(int i=1;i<10;i++){
a[i]=i*a[i-1];
}
}
int main()
{
a[0]=1;
df();
// for(int i=0;i<10;i++){
// printf("%d\n",a[i]);
// }
int n;
int sum;
while(scanf("%d",&n)==1&&n>=0){
sum=n;
if(n==0){
printf("NO\n");
continue;
}
int flag=0;
for(int i=9;i>=0;i--){
if(a[i]<=sum){
sum=sum-a[i];
// printf("i=%d,%d\n",i,a[i]);
}
if(sum==0){
printf("YES\n");
flag=1;
break;
}
}
if(flag==0)
printf("NO\n");
}
return 0;
}
POJ 1775 (ZOJ 2358) Sum of Factorials的更多相关文章
- poj 2246 (zoj 1094)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094 ZOJ Problem Set - 1094 Matrix Chai ...
- POJ 2260(ZOJ 1949) Error Correction 一个水题
Description A boolean matrix has the parity property when each row and each column has an even sum, ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- poj 3122 (二分查找)
链接:http://poj.org/problem?id=3122 Pie Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1 ...
- poj3270 && poj 1026(置换问题)
| 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...
- POJ 3252 (数位DP)
###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...
- poj 3335(半平面交)
链接:http://poj.org/problem?id=3335 //大牛们常说的测模板题 ------------------------------------------------- ...
- Sumdiv POJ - 1845 (逆元/分治)
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...
- Scout YYF I POJ - 3744(矩阵优化)
题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...
随机推荐
- java: Eclipse jsp tomcat 环境搭建(完整)
] 欢迎您! 要学习一门语言,首先要做的就是搭建环境,然后能写一个小的Demo(类似Helloworld),不仅可以建立信心,而且还可以为之后的学习搭建一个验证平台,事半功倍. net领域的vs,号称 ...
- [序列化] SerializeHelper--序列化操作帮助类 (转载)
点击下载 SerializeHelper.zip 这个类是关于加密,解密的操作,文件的一些高级操作1.XML序列化2.Json序列化3.SoapFormatter序列化4.BinaryFormatte ...
- Error parsing XML: not well-formed (invalid token)
从网络上或别的文件复制粘贴进来的代码有隐含格式,可将内容先粘贴进记事本清除格式,再复制粘贴进工程文件,即可解决此问题 注:1. 要使工程文件全选清空, 2. 若粘贴后刷新仍无效果,可手动输入
- font awesome icon
http://fontawesome.io/icons/ http://www.bootstrapicons.com/
- .net下载文件方法
1.以文件流下载 byte[] fileStr=new byte[5]; MemoryStream btMs = new MemoryStream(fileStr); //以字符流的形式下载文件 by ...
- cas系列(三)--HTTP和HTTPS、SSL
(这段时间打算做单点登录,因此研究了一些cas资料并作为一个系列记录下来,一来可能会帮助一些人,二来对我自己所学知识也是一个巩固.) 本文转自異次元藍客点击打开链接 1. HTTPS HTTPS(全 ...
- 理解java Web项目中的路径问题
本文以项目部署在tomcat服务器为例,其他相信也是一样的. 先说明请求页面的写法,在web中,页面路径主要写的有以下几种 1.请求重定向 2.浏览器的请求被服务器请求到新页面(我称为“转发”) 3. ...
- 完全背包的变形POJ1252
话说今天做背包做到有点累了,题目是英文的--而且还很长,我看了好久(弱爆了). 题目大概的意思就是,有六种硬币,之后,求用这六种硬币最小数目支付1到100美分的平均值,以及最小数目中的最大值. 很容易 ...
- SlidesJS 3.0.4 在手机上遇到的一些问题及解决办法
SlidesJS 3.0.4 http://slidesjs.com 在手机上遇到的一些问题及解决办法 1.手机上打开有sliderjs的页面后, 切换到别的页面再回来时, sliderjs部分不能滑 ...
- mongo数据库使用小结
db.userId5555.aggregate({$unwind:"$tcjl"},{$match:{"_id":"0e549864-2a56-43c ...