POJ 1775 (ZOJ 2358) Sum of Factorials
Description
John von Neumann, b. Dec. 28, 1903, d. Feb. 8, 1957, was a Hungarian-American mathematician who made important contributions to the foundations of mathematics, logic, quantum physics,meteorology, science, computers, and game theory. He was noted for a phenomenal memory and the speed with which he absorbed ideas and solved problems. In 1925 he received a B.S. diploma in chemical engineering from Zurich Institute and in 1926 a Ph.D. in mathematics from the University of Budapest. His Ph.D. dissertation on set theory was an important contribution to the subject. At the age of 20, von Neumann proposed a new definition of ordinal numbers that was universally adopted. While still in his twenties, he made many contributions in both pure and applied mathematics that established him as a mathematician of unusual depth. His Mathematical Foundations of Quantum Mechanics (1932) built a solid framework for the new scientific discipline. During this time he also proved the mini-max theorem of GAME THEORY. He gradually expanded his work in game theory, and with coauthor Oskar Morgenstern he wrote Theory of Games and Economic Behavior (1944).
There are some numbers which can be expressed by the sum of factorials. For example 9,9=1!+2!+3! Dr. von Neumann was very interested in such numbers. So, he gives you a number n, and wants you to tell him whether or not the number can be expressed by the sum of some factorials.
Well, it’s just a piece of cake. For a given n, you’ll check if there are some xi, and let n equal to Σ1<=i<=txi!. (t >=1 1, xi >= 0, xi = xj iff. i = j). If the answer is yes, say “YES”; otherwise, print out “NO”.
Input
You will get several non-negative integer n (n <= 1,000,000) from input file. Each one is in a line by itself.
The input is terminated by a line with a negative integer.
Output
For each n, you should print exactly one word (“YES” or “NO”) in a single line. No extra spaces are allowed.
Sample Input
9
-1
Sample Output
YES
注意:0的阶乘是1;(输入0,输出NO)
不是输入-1结束,而是输入负数结束程序;
题目要求不是连续阶乘和;
例如:4=0!+1!+2!=1+1+2
输出 YES;
7=3!+1!;
输出 YES;
我这里的思路是:
从不大于n的最大数开始减,如果能减到n为0,输出YES,否则
输出NO。
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
int a[10];
void df(){
for(int i=1;i<10;i++){
a[i]=i*a[i-1];
}
}
int main()
{
a[0]=1;
df();
// for(int i=0;i<10;i++){
// printf("%d\n",a[i]);
// }
int n;
int sum;
while(scanf("%d",&n)==1&&n>=0){
sum=n;
if(n==0){
printf("NO\n");
continue;
}
int flag=0;
for(int i=9;i>=0;i--){
if(a[i]<=sum){
sum=sum-a[i];
// printf("i=%d,%d\n",i,a[i]);
}
if(sum==0){
printf("YES\n");
flag=1;
break;
}
}
if(flag==0)
printf("NO\n");
}
return 0;
}
POJ 1775 (ZOJ 2358) Sum of Factorials的更多相关文章
- poj 2246 (zoj 1094)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=1094 ZOJ Problem Set - 1094 Matrix Chai ...
- POJ 2260(ZOJ 1949) Error Correction 一个水题
Description A boolean matrix has the parity property when each row and each column has an even sum, ...
- POJ 1274 The Perfect Stall || POJ 1469 COURSES(zoj 1140)二分图匹配
两题二分图匹配的题: 1.一个农民有n头牛和m个畜栏,对于每个畜栏,每头牛有不同喜好,有的想去,有的不想,对于给定的喜好表,你需要求出最大可以满足多少头牛的需求. 2.给你学生数和课程数,以及学生上的 ...
- poj 3122 (二分查找)
链接:http://poj.org/problem?id=3122 Pie Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 1 ...
- poj3270 && poj 1026(置换问题)
| 1 2 3 4 5 6 | | 3 6 5 1 4 2 | 在一个置换下,x1->x2,x2->x3,...,xn->x1, 每一个置换都可以唯一的分解为若干个不交的循环 如上面 ...
- POJ 3252 (数位DP)
###POJ 3252 题目链接 ### 题目大意:给你一段区间 [Start,Finish] ,在这段区间中有多少个数的二进制表示下,0 的个数 大于等于 1 的个数. 分析: 1.很显然是数位DP ...
- poj 3335(半平面交)
链接:http://poj.org/problem?id=3335 //大牛们常说的测模板题 ------------------------------------------------- ...
- Sumdiv POJ - 1845 (逆元/分治)
Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S m ...
- Scout YYF I POJ - 3744(矩阵优化)
题意:一条路上有n个地雷,给出地雷的位置.某人从起点(位置1)出发,走一步的概率是p,走两步的概率是(1-p),然后问有多少概率走过这个雷区. 思路: 只要走过最后一个地雷就代表走过雷区了. 而每到 ...
随机推荐
- c# HttpWebRequest与HttpWebResponse 绝技(转载)
c# HttpWebRequest与HttpWebResponse 绝技 如果你想做一些,抓取,或者是自动获取的功能,那么就跟我一起来学习一下Http请求吧.本文章会对Http请求时的Get和P ...
- WPF Radio组的绑定
都是控件编,RadioButtion 简单绑定使用,model.cs下边定义属性 private int _isSuccess; public int IsSuccess { get { return ...
- java.lang.IllegalStateException: Can not perform this action after onSaveInstanceState
在使用Fragment的过程中,常常会遇到在Activity的onSaveInstanceState方法调用之后,操作commit或者popBackStack而导致的crash. 因为在onSaveI ...
- SQL使用数据库引擎存储过程,系统视图查询,DBA,BI开发人员必备基础知识
在开发过程中会遇到需要弄清楚这个数据库什么时候建的,这个数据库中有多少表,这个存储过程长的什么样子等等信息,今天把自己工作过程中经常用到的一些数据库引擎存储过程,系统视图等等总结一下以备不时之用.下面 ...
- UIKit Animation
UIKit Animation 1.属性动画 - (void)changeFrameAnimation { [UIView beginAnimations:@"frameAnimation& ...
- ERROR ITMS-90167: "No .app bundles found in the package"
http://stackoverflow.com/questions/37838487/error-itms-90167-no-app-bundles-found-in-the-package 简单说 ...
- 测试functional的bind以及相关功能
注:在VS2010 UPDATE1下测试通过 /*测试functional的bind以及相关功能*/ #include <iostream> #include <functional ...
- [转]python pickle包,cPickle包 存储
在之前对Python对象的介绍中 (面向对象的基本概念,面向对象的进一步拓展),我提到过Python“一切皆对象”的哲学,在Python中,无论是变量还是函数,都是一个对象.当Python运行时,对象 ...
- 学渣也要搞 laravel(1)—— 安装篇
看到laravel(我叫它:拉瓦)那么热门,我也决定学上一学. Laravel 5.2 在 5.1 基础上继续改进和优化,添加了许多新的功能特性:多认证驱动支持.隐式模型绑定.简化Eloquent 全 ...
- Win7 下,离线安装 Android Studio 1.0.1 的方法
此教程没有亲自动手试过,先保存在这里 http://download.csdn.net/detail/tuobaxiao2008/8268281