BZOJ2442: [Usaco2011 Open]修剪草坪
2442: [Usaco2011 Open]修剪草坪
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 500 Solved: 244
[Submit][Status]
Description
在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪。现在,
新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠。
然而,FJ的草坪非常脏乱,因此,FJ只能够让他的奶牛来完成这项工作。FJ有N
(1 <= N <= 100,000)只排成一排的奶牛,编号为1...N。每只奶牛的效率是不同的,
奶牛i的效率为E_i(0 <= E_i <= 1,000,000,000)。
靠近的奶牛们很熟悉,因此,如果FJ安排超过K只连续的奶牛,那么,这些奶牛就会罢工
去开派对:)。因此,现在FJ需要你的帮助,计算FJ可以得到的最大效率,并且该方案中
没有连续的超过K只奶牛。
Input
* 第一行:空格隔开的两个整数N和K
* 第二到N+1行:第i+1行有一个整数E_i
Output
* 第一行:一个值,表示FJ可以得到的最大的效率值。
Sample Input
1
2
3
4
5
输入解释:
FJ有5只奶牛,他们的效率为1,2,3,4,5。他们希望选取效率总和最大的奶牛,但是
他不能选取超过2只连续的奶牛
Sample Output
FJ可以选择出了第三只以外的其他奶牛,总的效率为1+2+4+5=12。
HINT
Source
题解:
刚开始看见有种线段树的赶脚,后来发现情况有点儿复杂。。。
status里代码为何这么短?所以肯定不是线段树
考虑DP
f[i] 表示选 a[i] 能获得的最大和
g[i] 表示不选 a[i] 能获得的最大和
则 f[i]=max(g[j]+s[i]-s[j])=max(g[j]-s[j])+s[i] i-j<=k
g[i]=max(g[i-1],f[i-1])
然后我们发现能更新到 i 的j 范围单调不减,而我们要求一段区间内的最大值
这让我们想到了单调队列,然后就可以随便虐了
代码;
#include<cstdio> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> #include<iostream> #include<vector> #include<map> #include<set> #include<queue> #include<string> #define inf 1000000000 #define maxn 100000+10 #define maxm 500+100 #define eps 1e-10 #define ll long long #define pa pair<int,int> #define for0(i,n) for(int i=0;i<=(n);i++) #define for1(i,n) for(int i=1;i<=(n);i++) #define for2(i,x,y) for(int i=(x);i<=(y);i++) #define for3(i,x,y) for(int i=(x);i>=(y);i--) #define mod 1000000007 using namespace std; inline int read() { int x=,f=;char ch=getchar(); while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();} while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();} return x*f; }
ll f[maxn],g[maxn],s[maxn];
int n,k,q[maxn]; int main() { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); n=read();k=read();
for1(i,n)s[i]=s[i-]+read();
int l=,r=;
for1(i,n)
{
while(l<r&&i-q[l]>k)l++;
f[i]=g[q[l]]-s[q[l]]+s[i];
g[i]=max(f[i-],g[i-]);
while(l<=r&&g[q[r]]-s[q[r]]<=g[i]-s[i])r--;
q[++r]=i;
}
printf("%lld\n",max(f[n],g[n])); return ; }
BZOJ2442: [Usaco2011 Open]修剪草坪的更多相关文章
- bzoj2442[Usaco2011 Open]修剪草坪 单调队列优化dp
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1159 Solved: 593[Submit] ...
- [BZOJ2442][Usaco2011 Open]修剪草坪 dp+单调队列优化
2442: [Usaco2011 Open]修剪草坪 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1118 Solved: 569[Submit] ...
- BZOJ2442 Usaco2011 Open修剪草坪(动态规划+单调队列)
显然可以dp.显然可以单调队列优化一下. #include<iostream> #include<cstdio> #include<cmath> #include& ...
- bzoj2442[Usaco2011 Open]修剪草坪——单调队列优化
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2442 考虑记录前 i 个.末尾 j 个连续选上的最大值.发现时空会爆. 又发现大量的转移形如 ...
- BZOJ 2442: [Usaco2011 Open]修剪草坪( dp )
dp dp[ i ] 表示第 i 个不选 , 前 i 个的选择合法的最小损失 , dp[ i ] = min( dp[ j ] ) ( max( 0 , i - 1 - k ) <= j < ...
- BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP
BZOJ_2343_[Usaco2011 Open]修剪草坪 _单调队列_DP 题意: N头牛,每头牛有一个权值,选择一些牛,要求连续的不能超过k个,求选择牛的权值和最大值 分析: 先考虑暴力DP,f ...
- 【BZOJ2442】 [Usaco2011 Open]修剪草坪 斜率优化DP
第一次斜率优化. 大致有两种思路: 1.f[i]表示第i个不选的最优情况(最小损失和)f[i]=f[j]+e[i] 显然n^2会T,但是可以发现f的移动情况可以用之前单调队列优化,就优化成O(n)的了 ...
- BZOJ 2442: [Usaco2011 Open]修剪草坪
Description 在一年前赢得了小镇的最佳草坪比赛后,FJ变得很懒,再也没有修剪过草坪.现在,新一轮的最佳草坪比赛又开始了,FJ希望能够再次夺冠.然而,FJ的草坪非常脏乱,因此,FJ只能够让他的 ...
- BZOJ 2442: [Usaco2011 Open]修剪草坪 单调队列
Code: #include<iostream> #include<cstdio> #include<cstring> #include<algorithm& ...
随机推荐
- 一行代码实现iOS序列化与反序列化(runtime)
一.变量声明 为便于下文讨论,提前创建父类Biology以及子类Person: Biology: @interface Biology : NSObject { NSInteger *_hairCou ...
- 解决下载android sdk慢的问题
修改host文件 203.208.46.146 dl.google.com 203.208.46.146 dl-ssl.google.com 强制不使用https访问 在sdk manager里选择t ...
- Java基础知识强化之集合框架笔记07:Collection集合的遍历之迭代器遍历
1. Collection的迭代器: Iterator iterator():迭代器,集合的专用遍历方式 2. 代码示例: package cn.itcast_03; import java.util ...
- 浪漫桃心的Android表白程序
本文转载于 huachao1001的专栏 几年前,看到过有个牛人用HTML5绘制了浪漫的爱心表白动画.地址在这:浪漫程序员 HTML5爱心表白动画.发现原来程序员也是可以很浪……漫…..的.那么在A ...
- entity 实体模型timeout设置
public Entities(): base("name=Entities") { var adapter = (IObjectContextAdapter)this; var ...
- MVC中给TextBoxFor设置默认值和属性
例如:(特别注意在设置初始值的时候 Value 中的V要大写) @Html.TextBoxFor(model => model.CustomerCode, new { Value=" ...
- firebug中console命令尝试
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 关于开发C#中的asp.net中gridview控件的使用
原文网址:http://blog.sina.com.cn/s/blog_67f1b4b201017663.html 1.GridView无代码分页排序: 效果图: 1.AllowSorting设为Tr ...
- 分页技术之PageDataSource类
之前给大家介绍了分页技术之Gridview控件,今天给大家介绍另外一种分页技术,采用PageDataSource类 + Repeater控件来实现. 前台只需要拖出一个Repeater控件来绑定要显示 ...
- AutoLayout学习之理解intrinsicContentSize,Content Hugging Priority,Content Compression Resistance Priority
TableViewCell的高度计算应该是所有开发者都会使用到的东西,之前都是用代码计算的方法来计算这个高度.最近有时间看了几个计算Cell高度的方法.基本上都用到了AutoLayout,这篇首先介绍 ...