老oj曼哈顿最小生成树
Description
平面坐标系xOy内,给定n个顶点V = (x , y)。对于顶点u、v,u与v之间的距离d定义为|xu – xv| + |yu – yv|
你的任务就是求出这n个顶点的最小生成树。
Input
第一行一个正整数n,表示定点个数。
接下来n行每行两个正整数x、y,描述一个顶点。
Output
只有一行,为最小生成树的边的距离和。
Sample Input
4
1 0
0 1
0 -1
-1 0
Sample Output
6 [数据约定]
对于30%的数据n <= 2000;
对于50%的数据n <= 5000;
对于100%的数据n <= 50000;
0 <= x, y <= 100000。 题解:http://blog.csdn.net/acm_cxlove/article/details/8890003
code:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
#define maxn 50005
#define inf 1061109567
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
int n,m,ans=;
struct Point{
int x,y,d,id;
}point[maxn],tmp[maxn];
bool cmp1(Point a,Point b){
if (a.x!=b.x) return a.x>b.x;
return a.y>b.y;
}
int calc(Point a,Point b){return abs(a.x-b.x)+abs(a.y-b.y);}
struct Edge{
int u,v,c;
}edge[maxn<<];
bool cmp2(Edge a,Edge b){return a.c<b.c;}
int cntd,d[maxn];
struct DATA{
int val,pos;
void init(){val=inf,pos=-;}
void update(DATA b){if (val>b.val) val=b.val,pos=b.pos;}
};
struct bit{
#define lowbit(x) ((x)&(-(x)))
DATA node[maxn];
void init(){for (int i=;i<=cntd;i++) node[i].init();}
void insert(int x,DATA p){
x=cntd-x+;
for (int i=x;i<=cntd;i+=lowbit(i)) node[i].update(p);
}
int query(int x){
x=cntd-x+;
DATA ans; ans.init();
for (int i=x;i;i-=lowbit(i)) ans.update(node[i]);
return ans.pos;
}
}T;
void prepare(){
for (int i=;i<=n;i++) d[i]=point[i].y-point[i].x;
sort(d+,d+n+),cntd=unique(d+,d+n+)-d-;
for (int i=;i<=n;i++) point[i].d=lower_bound(d+,d+cntd+,point[i].y-point[i].x)-d;
sort(point+,point+n+,cmp1);
T.init();
for (int i=;i<=n;i++){
int u=point[i].id,v=T.query(point[i].d);
if (v!=-) edge[++m]=(Edge){u,v,calc(tmp[u],tmp[v])};
T.insert(point[i].d,(DATA){point[i].x+point[i].y,u});
}
}
int fa[maxn];
int find(int x){return x==fa[x]?fa[x]:fa[x]=find(fa[x]);}
int main(){
read(n);
for (int i=;i<=n;i++) read(point[i].x),read(point[i].y),point[i].id=i;
for (int i=;i<=n;i++) tmp[i]=point[i]; prepare();
for (int i=;i<=n;i++) point[i].x=tmp[i].y,point[i].y=tmp[i].x,point[i].id=i; prepare();
for (int i=;i<=n;i++) point[i].x=-tmp[i].y,point[i].y=tmp[i].x,point[i].id=i; prepare();
for (int i=;i<=n;i++) point[i].x=tmp[i].x,point[i].y=-tmp[i].y,point[i].id=i; prepare();
sort(edge+,edge+m+,cmp2);
for (int i=;i<=n;i++) fa[i]=i;
for (int i=,cnt=;i<=m&&cnt<n;i++)
if (find(edge[i].u)!=find(edge[i].v))
fa[find(edge[i].u)]=find(edge[i].v),cnt++,ans+=edge[i].c;
printf("%d\n",ans);
return ;
}
老oj曼哈顿最小生成树的更多相关文章
- 【BZOJ-2177】曼哈顿最小生成树 Kruskal + 树状数组
2177: 曼哈顿最小生成树 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 190 Solved: 77[Submit][Status][Discu ...
- BZOJ 2177: 曼哈顿最小生成树
Sol 考了好几次曼哈顿最小生成树,然而一直不会打...这次终于打出来了...神tm调试了2h...好蛋疼... 首先曼哈顿最小生成树有个结论就是讲它每45度分出一个象限,对于每个点,只与每个象限中离 ...
- POJ3241 Object Clustering 曼哈顿最小生成树
题意:转换一下就是求曼哈顿最小生成树的第n-k条边 参考:莫涛大神的论文<平面点曼哈顿最小生成树> /* Problem: 3241 User: 96655 Memory: 920K Ti ...
- poj 3241 Object Clustering (曼哈顿最小生成树)
Object Clustering Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 2640 Accepted: 806 ...
- POJ 3241 Object Clustering 曼哈顿最小生成树
Object Clustering Description We have N (N ≤ 10000) objects, and wish to classify them into severa ...
- BZOJ.2177.曼哈顿最小生成树(Kruskal)
\(Solution\) 参考 对于每个点,向唯一有可能与它形成MST的8个点连边,由于是双向单边,所以每个点最多连出4条边(证明见blog) 怎么找到一个区域内最近的点? 只考虑y轴右侧45°的区域 ...
- 常用OJ名字+地址(自用)
常用OJ名字+地址 不定期更新,自己用,有补充的也可以给我说说哈. 中文 openjudge 地址:openjudge.cn 说明:北大提供的一个平台,学校可申请小组: 比较好的小组: 计算概论:ic ...
- BZOJ 4242 水壶(BFS建图+最小生成树+树上倍增)
题意 JOI君所居住的IOI市以一年四季都十分炎热著称. IOI市是一个被分成纵H*横W块区域的长方形,每个区域都是建筑物.原野.墙壁之一.建筑物的区域有P个,编号为1...P. JOI君只能进入建筑 ...
- 楼天城楼教主的acm心路历程(作为励志用)
楼主个人博客:小杰博客 利用假期空暇之时,将这几年GCJ,ACM,TopCoder 參加的一些重要比赛作个 回顾.昨天是GCJ2006 的回顾,今天时间上更早一些吧,我如今还清晰记得3 年 前,我刚刚 ...
随机推荐
- 高性能、高流量Java Web站点打造的22条建议
@http://www.csdn.net/article/2013-12-20/2817861-22-recommendations-for-building-effective-high-traff ...
- C#与C++函数调用
在 上篇文章重点讲解数据类型的转换,在此基础上再讲解函数调用. 1.函数调用 c++中函数 INF_NET_API INF_RESULT WINAPI INF_NET_GetList(long lLo ...
- ODBC 中遇到的错误
直接贴解决办法的链接: http://zhidao.baidu.com/link?url=pyd2AiazzsZr4IlMpiCdXlLC6nnao908xmqmY9QI0yj8vIGCbRPRrqh ...
- RichTextBox 右键显示 ContextMenuTrip 分类: C# 2014-10-16 10:43 337人阅读 评论(0) 收藏
说明: (1)命名: RichTextBox -> rtxt1 ContextMenuTrip -> cms1 (2)截图: (3)完整代码: <span style=" ...
- Rebuild my Ubuntu 分类: ubuntu shell 2014-11-08 18:23 193人阅读 评论(0) 收藏
全盘格式化,重装了Ubuntu和Windows,记录一下重新配置Ubuntu过程. //build-essential sudo apt-get install build-essential sud ...
- [置顶] Java Web开发教程来袭
Java Web,是用Java技术来解决相关web互联网领域的技术总和.web包括:web服务器和web客户端两部分.Java在客户端的应用有java applet不过现在使用的很少,Java在服务器 ...
- Qt 学习之路:QML 基本元素
QML 基本元素可以分为可视元素和不可视元素两类.可视元素(例如前面提到过的Rectangle)具有几何坐标,会在屏幕上占据一块显示区域.不可视元素(例如Timer)通常提供一种功能,这些功能可以作用 ...
- Servlet 过滤器
一.过滤器介绍 在Servlet 2.3中定义了过滤器,它能够对Servlet容器的请求和响应进行检查和修改. Servlet过滤器能够在Servlet被调用之前检查Request对象,并修改Requ ...
- Java设计模式05:常用设计模式之原型模式(创建型模式)
1. Java之原型模式(Prototype Pattern) 原型模式属于对象的创建模式.通过给出一个原型对象来指明所有创建的对象的类型,然后用复制这个原型对象的办法创建出更多同类型的对象. ...
- ActionScript:Resampling PCM data
使用基于flash的麦克风录音,如果想在获取完PCM采样数据后,通过Sound马上回放,必须经过resampling.(注意:如果录音是采用的44KHz的话,则不需要) 因此,需要as实现一个简便的函 ...