约翰开车回家,又准备顺路买点饲料了(咦?为啥要说“又”字?)回家的路程一共有 E 公里,
这一路上会经过 K 家商店,第 i 家店里有 Fi 吨饲料,售价为每吨 Ci 元。约翰打算买 N 吨饲料,他
知道商家的库存是足够的,至少所有店的库存总和不会少于 N。除了购买饲料要钱,运送饲料也是
要花油钱的,约翰的卡车上如果装着 X 吨饲料,那么他行驶一公里会花掉 X 2 元,行驶 D 公里需要
D X 2 元。已知第 i 家店距约翰所在的起点有 Xi 公里,那么约翰在哪些商店买饲料运回家,才能做到
最省钱呢?

输入格式
• 第一行:三个整数 KE N, 1 K 10000 , 1 E 500 , 1 N 500
• 第二行到第 N + 1 行:第 i + 1 行有三个整数 XiFi Ci, 0 < Xi < E, 1 Fi 10000, 1
Ci 107

输出格式
• 单个整数:表示购买及运送饲料的最小费用

样例输入
2 5 3
3 1 2
4 1 2
1 1 1

样例输出
9

解释
在离家较近的两家商店里各购买一吨饲料,
则花在路上的钱是 1 + 4 = 5,花在店里的钱是
2 + 2 = 4

【分析】

  嗯,啊,还是好笨,想了挺久。

  先列DP,f[i][x]=min(f[j][k]+(x-k)^2*(d[i]-d[j])+(x-k)*c[i]) d[i][x]表示走到i,一共买了x个东西的最小费用。

  但是这样列的话很难降维,因为答案跟d[j]有关,所以可以用 计算未来费用的思想,就是买的时候直接算他运到终点了。

  f[i][x]=min(f[j][k]+(x-k)*c[i]+(x^2-k^2)*(s-d[i])) 这样就可以降维了。

  f[x]=min(f[k]+(x-k)*c[i]+(x^2-k^2)*(s-d[i])) i直接for,不过要注意一点是要用的是i之前算出的f而不能是i时计算出的f

  如果没有限制的话,这样的方程当然存一个最优解就好了,但是有限制,就要看限制的单调性,我们要x-k<=sm[i] 即 k>=x-sm[i]

  x按顺序枚举的话就有单调性了。

  啊,又是一道限制为主的单调队列ORZ、、、

  

代码如下:

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define Maxn 510
#define Maxm 200010
#define LL long long struct node
{
LL d,sm,w;
}t[Maxn]; LL mymin(LL x,LL y) {return x<y?x:y;}
LL mymax(LL x,LL y) {return x>y?x:y;} bool cmp(node x,node y) {return x.d<y.d;} LL q[Maxm],st[Maxm],f[Maxm]; int main()
{
LL v,s,n;
scanf("%lld%lld%lld",&v,&s,&n);
for(LL i=;i<=n;i++) scanf("%lld%lld%lld",&t[i].d,&t[i].sm,&t[i].w);
sort(t+,t++n,cmp);
for(LL i=;i<=n;i++) t[i].d=s-t[i].d;
memset(f,,sizeof(f));
f[]=;
int ql,qr;
for(LL i=;i<=n;i++)
{
ql=qr=;q[qr]=;st[qr]=;
for(LL j=;j<=v;j++)
{
while(ql<qr&&(j-st[ql])>t[i].sm) ql++;
LL now=f[j];
f[j]=mymin(f[j],q[ql]+t[i].d*j*j+t[i].w*j);
while(now-j*j*t[i].d-t[i].w*j<=q[qr]&&qr>=ql) qr--;
q[++qr]=now-j*j*t[i].d-t[i].w*j;st[qr]=j;
}
}
printf("%lld\n",f[v]);
return ;
}

2016-10-20 09:14:21

Buying Feed, 2010 Nov (单调队列优化DP)的更多相关文章

  1. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  2. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  3. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  4. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  5. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  6. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  7. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  8. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

  9. BZOJ1791[Ioi2008]Island 岛屿 ——基环森林直径和+单调队列优化DP+树形DP

    题目描述 你将要游览一个有N个岛屿的公园.从每一个岛i出发,只建造一座桥.桥的长度以Li表示.公园内总共有N座桥.尽管每座桥由一个岛连到另一个岛,但每座桥均可以双向行走.同时,每一对这样的岛屿,都有一 ...

随机推荐

  1. A题笔记(14)

    Reverse Words in a String : http://oj.leetcode.com/problems/reverse-words-in-a-string/ 代码 : https:// ...

  2. 一些VR延迟优化方法

    http://m.blog.csdn.net/article/details?id=50667507 VR中的”延迟”, 特指”Motion-To-Photon Latency”, 指的是从用户运动开 ...

  3. JDK版本过高,导致Eclipse报错

    1.JDK版本如果比较高,而使用的eclipse版本比较低,导致在eclispe中不能识别而报错.   2.点击Attach Source添加rt.jar后,又出现如下错误 3.这样的错误就是由于ec ...

  4. php导出execl

    <?php function export_excel($items,$fields,$fields_array,$name) { /* * 调用方法示例 * $items = $this-&g ...

  5. Struts2 多文件下载

    Step1:导入支持jar包 commons-fileupload-1.3.1.jar commons-io-2.4.jar jstl-1.2.jar standard-1.1.2.jar commo ...

  6. Object-C内存管理

    Object-C的内存管理是基于引用计数的.你要做的事情只是关注你的引用,而释放内存的工作实际上由运行环境完成. 在最简单的情形中,你分配(alloc)的对象,或只是保留(retain)在一些地方的对 ...

  7. 前不久一个swift项目用uicollectionview 用sdwebimage 加载图片,发生内存猛增,直接闪退的情况,简单说一下解决方案。

    1.首先在appdelegate方法 didFinishLaunchingWithOptions SDImageCache.sharedImageCache().maxCacheSize=1024*1 ...

  8. OC中的字符串常用方法

    OC中的字符串常用方法 OC中对字符串进行操作使用了Foundation框架中的NSString类(不可变).NSMutableString类(可变). NSString 1.创建字符串 [objc] ...

  9. sharepoint2013 新建母板页 新建页面布局 关联母板页和页面布局

    1     母板页的应用和layout(页面布局)的创建和应用 母板页上传:将准备好的html和样式 通过spd中的导入方式导入模版html, 导入后: 然后在网站设置中进行转换为母板页.  随后编辑 ...

  10. java新手笔记14 类继承示例

    1.Person package com.yfs.javase; public class Person { private String name; private int age; private ...