能量模型

RBM用到了能量模型。

简单的概括一下能量模型。假设一个孤立系统(总能量$E$一定,粒子个数$N$一定),温度恒定为1,每个粒子有$m$个可能的状态,每个状态对应一个能量$e_i$。那么,在这个系统中随机选出一个粒子,这个粒子处在状态$k$的概率,或者说具有状态$k$的粒子所占的比例为:

$$p(state=k)=\frac{e^{-e_k}}{Z}$$

其中$Z=\sum e^{-e_i}$称为配分函数。

扩展开来,在一个正则系综中,系统$i$处在状态$S_i$的概率为:

$$P(state=i)=\frac{e^{-E_i}}{\sum e^{-E_i}}$$

当这个系统有个宏观的状态,对应的宏观测量值为$Q$,状态是微观状态的集合$S_Q=\{s_1,s_4,...\}$,则该宏观状态出现的概率为

$$P(S_Q)=\frac{\sum_{k\in S_Q} e^{-e_k}}{Z}$$

比照粒子,我们定义一个宏观状态对应的能量为$E_Q$,改写上式为

$$P(S_Q)=\frac{e^{-E_Q}}{Z}~~where~~Z=\sum_Q e^{-E_Q}$$

与微观态的关系为

$$E_Q=-ln\sum_{k\in S_Q} e^{-e_k}$$

受限玻尔兹曼机

受限玻尔兹曼机是这么一个系统,系统结构为一个二分网络。一种节点类型为可视节点,另一种为隐含节点,所有节点都为二值节点(0,1)。如下图。

定义该系统的能量为

$$E=-(\sum a_iv_i+\sum w_{i,j}v_i h_j+\sum b_ih_j)~~where~~w_{i,j}=w_{j,i} ~~~~~~~~~(1)$$

即系统能量为各节点能量与耦合能量(边能量)之和。系统处在状态${V,H}$的概率为:

$$P(V,H)=\frac{e^{-E(V,H)}}{\sum_{V,H} e^{-E(V,H)}}=\frac{e^{-E(V,H)}}{Z}$$

$Z$为配分函数。

可视层节点处在状态$x$的概率为:

$$P(V=x)=\frac{\sum _He^{-E(x,H)}}{Z} \equiv \frac{e^{-E_x}}{\sum e^{-E_x}}~~~~~~~~~~(2)$$

其中

$$E_x=-ln(\sum _He^{-E(x,H)})~~~~~~(3)$$

由于同一类节点是不相连的,因此同类节点之间相互独立,因此每个隐含层节点以及与它相连的边组成的一个小系统是一个独立系统。当可视层状态给定为$x$时,该小系统只有两个状态(隐含节点为0或者1),或者说具有两个能阶。

$$-E(h_i;x)=b_ih_i+\sum w_ix_ih_i=(b_i+\sum w_ix_i)h_i=B_ih_i~~where~~B_i=b_i+\sum w_ix_i$$

因此

$$E(h_i=0;x)=0,E(h_i=1;x)=-B_i$$

$$P(h_i=1;x)=\frac{e^{B_i}}{e^0+e^{B_i}}=sigmoid(B_i)$$

我们重写公式(1)的系统能量表示

$$E(x,h)=-(\sum a_iv_i+\sum B_jh_j)=-(A^Tx+B^Th)~~~(4)$$

并且得出

$$E_x=-ln(e^{A^Tx}\sum_h \prod_j e^{B_j h_j})=-A^Tx- ln\sum_h \prod_j e^{B_j h_j}=-A^Tx-ln \prod_j \sum_h e^{B_j h_j}=-A^Tx-\sum_j ln \sum_{h_j \in \{0,1\}} e^{B_j h_j}=-A^Tx-\sum_j ln(1+e^{B_j})$$

为了计算方便,我们要优化的目标函数是

$$J=-ln P(x)=E_x+ln Z$$

对某一参数 $\theta$,我们得出

$$\frac{\partial J}{\partial \theta}=\frac{\partial E_x}{\partial \theta}-\sum_v P(v)\frac{\partial E_v}{\partial \theta}$$

参考文献

http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine

http://deeplearning.net/tutorial/rbm.html

受限玻尔兹曼机(RBM)的更多相关文章

  1. 基于受限玻尔兹曼机(RBM)的协同过滤

    受限玻尔兹曼机是一种生成式随机神经网络(generative stochastic neural network), 详细介绍可见我的博文<受限玻尔兹曼机(RBM)简介>, 本文主要介绍R ...

  2. 深度学习方法:受限玻尔兹曼机RBM(一)基本概念

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 最近在复习经典机器学习算法的同 ...

  3. 深度学习方法:受限玻尔兹曼机RBM(四)对比散度contrastive divergence,CD

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上篇讲到,如果用Gibbs Sa ...

  4. 深度学习方法:受限玻尔兹曼机RBM(三)模型求解,Gibbs sampling

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 接下来重点讲一下RBM模型求解 ...

  5. 深度学习方法:受限玻尔兹曼机RBM(二)网络模型

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上解上一篇RBM(一)基本概念, ...

  6. 受限玻尔兹曼机RBM

    相关算法 python代码参考http://blog.csdn.net/zc02051126/article/details/9668439#(作少量修改与注释) #coding:utf8 impor ...

  7. 受限玻尔兹曼机RBM—简易详解

  8. 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)

    这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/ ...

  9. 受限玻尔兹曼机(RBM)原理总结

    在前面我们讲到了深度学习的两类神经网络模型的原理,第一类是前向的神经网络,即DNN和CNN.第二类是有反馈的神经网络,即RNN和LSTM.今天我们就总结下深度学习里的第三类神经网络模型:玻尔兹曼机.主 ...

随机推荐

  1. Android AlertDialog更改标题颜色,字体等

    更改AlertDialog标题的方法google目前没有提供,只能通过其他办法 一种办法是:首先在源代码中找到有个叫AlertController的类,这个类就是AlertDialog的实现类,是没有 ...

  2. RESTful风格的Web服务框架:Swagger

    Swagger与SpringMVC项目整合 为了方便的管理项目中API接口,在网上找了好多关于API接口管理的资料,感觉目前最流行的莫过于Swagger了,功能强大,UI界面漂亮,并且支持在线测试等等 ...

  3. 14.7.4 InnoDB File-Per-Table Tablespaces

    14.7.4 InnoDB File-Per-Table Tablespaces 从历史上看,所有的InnoDB 表和indexes 是存储在system 表空间. 这个整体的方法是针对机器是整个用于 ...

  4. buffer busy waits

    Buffer busy waits 当会话想要访问缓冲区中的数据块,而该数据块正在被其他会话使用时将产生Buffer busy waits事件. 其他会话可能正从数据文件向缓冲器读取同样的数据块,或正 ...

  5. 【HDOJ】1150 Machine Schedule

    匈牙利算法. #include <stdio.h> #include <string.h> #define MAXNUM 1005 char map[MAXNUM][MAXNU ...

  6. C#调用Web Service时的身份验证

    原理:webservice所在的系统中,在系统域中建立用于登录的软件的用户和密码,软件登录时将用户名.密码和登录的本机的域的名字通过webService的NetworkCredential传递到web ...

  7. U盘安装 OSX

    首先,刚从app store下载完的OS X Lion会放在屏幕下方的Dock中. 用鼠标将Mac OS X Lion 10.7文件从Dock中拖放到桌面. 右键单击Mac OS X Lion 10. ...

  8. HDU --3549

    Flow Problem Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Tota ...

  9. AMBA总线介绍

    The Advanced Microcontroller Bus Architecture (AMBA) specification defines an on- chip communication ...

  10. Hibernate 以流的方式获取数据

    hibernateQuery.setFetchSize(Integer.MIN_VALUE); results = hibernateQuery.scroll(ScrollMode.FORWARD_O ...