受限玻尔兹曼机(RBM)
能量模型
RBM用到了能量模型。
简单的概括一下能量模型。假设一个孤立系统(总能量$E$一定,粒子个数$N$一定),温度恒定为1,每个粒子有$m$个可能的状态,每个状态对应一个能量$e_i$。那么,在这个系统中随机选出一个粒子,这个粒子处在状态$k$的概率,或者说具有状态$k$的粒子所占的比例为:
$$p(state=k)=\frac{e^{-e_k}}{Z}$$
其中$Z=\sum e^{-e_i}$称为配分函数。
扩展开来,在一个正则系综中,系统$i$处在状态$S_i$的概率为:
$$P(state=i)=\frac{e^{-E_i}}{\sum e^{-E_i}}$$
当这个系统有个宏观的状态,对应的宏观测量值为$Q$,状态是微观状态的集合$S_Q=\{s_1,s_4,...\}$,则该宏观状态出现的概率为
$$P(S_Q)=\frac{\sum_{k\in S_Q} e^{-e_k}}{Z}$$
比照粒子,我们定义一个宏观状态对应的能量为$E_Q$,改写上式为
$$P(S_Q)=\frac{e^{-E_Q}}{Z}~~where~~Z=\sum_Q e^{-E_Q}$$
与微观态的关系为
$$E_Q=-ln\sum_{k\in S_Q} e^{-e_k}$$
受限玻尔兹曼机
受限玻尔兹曼机是这么一个系统,系统结构为一个二分网络。一种节点类型为可视节点,另一种为隐含节点,所有节点都为二值节点(0,1)。如下图。
定义该系统的能量为
$$E=-(\sum a_iv_i+\sum w_{i,j}v_i h_j+\sum b_ih_j)~~where~~w_{i,j}=w_{j,i} ~~~~~~~~~(1)$$
即系统能量为各节点能量与耦合能量(边能量)之和。系统处在状态${V,H}$的概率为:
$$P(V,H)=\frac{e^{-E(V,H)}}{\sum_{V,H} e^{-E(V,H)}}=\frac{e^{-E(V,H)}}{Z}$$
$Z$为配分函数。
可视层节点处在状态$x$的概率为:
$$P(V=x)=\frac{\sum _He^{-E(x,H)}}{Z} \equiv \frac{e^{-E_x}}{\sum e^{-E_x}}~~~~~~~~~~(2)$$
其中
$$E_x=-ln(\sum _He^{-E(x,H)})~~~~~~(3)$$
由于同一类节点是不相连的,因此同类节点之间相互独立,因此每个隐含层节点以及与它相连的边组成的一个小系统是一个独立系统。当可视层状态给定为$x$时,该小系统只有两个状态(隐含节点为0或者1),或者说具有两个能阶。
$$-E(h_i;x)=b_ih_i+\sum w_ix_ih_i=(b_i+\sum w_ix_i)h_i=B_ih_i~~where~~B_i=b_i+\sum w_ix_i$$
因此
$$E(h_i=0;x)=0,E(h_i=1;x)=-B_i$$
$$P(h_i=1;x)=\frac{e^{B_i}}{e^0+e^{B_i}}=sigmoid(B_i)$$
我们重写公式(1)的系统能量表示
$$E(x,h)=-(\sum a_iv_i+\sum B_jh_j)=-(A^Tx+B^Th)~~~(4)$$
并且得出
$$E_x=-ln(e^{A^Tx}\sum_h \prod_j e^{B_j h_j})=-A^Tx- ln\sum_h \prod_j e^{B_j h_j}=-A^Tx-ln \prod_j \sum_h e^{B_j h_j}=-A^Tx-\sum_j ln \sum_{h_j \in \{0,1\}} e^{B_j h_j}=-A^Tx-\sum_j ln(1+e^{B_j})$$
为了计算方便,我们要优化的目标函数是
$$J=-ln P(x)=E_x+ln Z$$
对某一参数 $\theta$,我们得出
$$\frac{\partial J}{\partial \theta}=\frac{\partial E_x}{\partial \theta}-\sum_v P(v)\frac{\partial E_v}{\partial \theta}$$
参考文献
http://en.wikipedia.org/wiki/Restricted_Boltzmann_machine
http://deeplearning.net/tutorial/rbm.html
受限玻尔兹曼机(RBM)的更多相关文章
- 基于受限玻尔兹曼机(RBM)的协同过滤
受限玻尔兹曼机是一种生成式随机神经网络(generative stochastic neural network), 详细介绍可见我的博文<受限玻尔兹曼机(RBM)简介>, 本文主要介绍R ...
- 深度学习方法:受限玻尔兹曼机RBM(一)基本概念
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 最近在复习经典机器学习算法的同 ...
- 深度学习方法:受限玻尔兹曼机RBM(四)对比散度contrastive divergence,CD
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上篇讲到,如果用Gibbs Sa ...
- 深度学习方法:受限玻尔兹曼机RBM(三)模型求解,Gibbs sampling
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 接下来重点讲一下RBM模型求解 ...
- 深度学习方法:受限玻尔兹曼机RBM(二)网络模型
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入 上解上一篇RBM(一)基本概念, ...
- 受限玻尔兹曼机RBM
相关算法 python代码参考http://blog.csdn.net/zc02051126/article/details/9668439#(作少量修改与注释) #coding:utf8 impor ...
- 受限玻尔兹曼机RBM—简易详解
- 受限玻尔兹曼机(Restricted Boltzmann Machine,RBM)
这篇写的主要是翻译网上一篇关于受限玻尔兹曼机的tutorial,看了那篇博文之后感觉算法方面讲的很清楚,自己收获很大,这里写下来作为学习之用. 原文网址为:http://imonad.com/rbm/ ...
- 受限玻尔兹曼机(RBM)原理总结
在前面我们讲到了深度学习的两类神经网络模型的原理,第一类是前向的神经网络,即DNN和CNN.第二类是有反馈的神经网络,即RNN和LSTM.今天我们就总结下深度学习里的第三类神经网络模型:玻尔兹曼机.主 ...
随机推荐
- android 常见分辨率(mdpi、hdpi 、xhdpi、xxhdpi )及屏幕适配注意事
1.1 手机常见分辨率: 4:3VGA 640*480 (Video Graphics Array)QVGA 320*240 (Quarter VGA)HVGA 480*320 (Half ...
- 使用Maven构建Web项目的目录结构
1.Web项目的目录结构 基于Java的Web项目,标准的打包方式是WAR.与JAR比较,包含更多的内容,比如JSP文件.Servlet.Java类.web.xml配置文件.依赖JAR包.静态 ...
- 制作手机浏览器显示格式的HTML页面
最近要推出手机支持访问的HTML页面效果,而这在制作手机页面的过程中状况连连. 主要一下就我制作的工程中所遇的问题说明一下: 1. 改掉HTML页面声明:(以往大部分页面都是HTML4.0的声明) 还 ...
- Apache 整合 Tomcat (首先Apache 发布的是PHP项目,占用端口80,tomcat 发布的是Java 项目,占用端口8080)
情况简介: Apache 整合 Tomcat (首先Apache 发布的是PHP项目,占用端口80,tomcat 发布的是Java 项目,占用端口8080),而现在是虚拟出来两个域名(希望这两个域名都 ...
- (转载)绿色版Mysql的安装配置
本文出自于:http://johnnyhg.javaeye.com/blog/245544 一.下载MySQL http://www.mysql.org/downloads 我下载的是mysql-no ...
- JVM中锁优化简介
本文将简单介绍HotSpot虚拟机中用到的锁优化技术. 自旋锁 互斥同步对性能最大的影响是阻塞的实现,挂起线程和恢复线程的操作都需要转入内核态中完成,这些操作给系统的并发性能带来了很大的压力.而在很多 ...
- 机器学习算法库scikit-learn的安装
scikit-learn 是一个python实现的免费开源的机器学习算法包,从字面意思可知,science 代表科学,kit代表工具箱,直接翻译过来就是用于机器学习的科学计算包. 安装scikit-l ...
- hdoj 1010 Tempter of the Bone【dfs查找能否在规定步数时从起点到达终点】【奇偶剪枝】
Tempter of the Bone Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Othe ...
- XMPPFrameWork IOS 开发(六)聊天室
原始地址:XMPPFrameWork IOS 开发(六)聊天室 聊天室 //初始化聊天室 XMPPJID *roomJID = [XMPPJID jidWithString:ROOM_JID]; xm ...
- 转 jquery 学习笔记
jQ通过选择器选择元素,选择器的语法和css类似$(css选择器语法) 参数可以是id.class.tag等等通过如上选择就可以获得一个元素 jQuery名字冲突 解决方法: var jq=jQuer ...