最大半连通子图

【问题描述】

一个有向图G = (V,E)称为半连通的(Semi-Connected),如果满足:∀ u, v ∈V,满足u—>v 或 v —> u,即对于图中任意两点u,v, 存在一条u到v的有向路径或者从v到u的有向路径。

若满足,则称G’是G的一个导出子图。

若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图。

若G’是G所有半连通子图中包含节点数最多的,则称G’是G的最大半连通子图。

给定一个有向图G,请求出G的最大半连通子图拥有的节点数K,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。

【输入文件】

第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述。接下来M行,每行两个正整数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。

【输出文件】

应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.

【样例输入】

6 6 20070603

1 2

2 1

1 3

2 4

5 6

6 4

【样例输出】

3

3

【数据规模】

对于20%的数据, N ≤ 18;

对于60%的数据, N ≤ 10000;

对于100%的数据, N ≤ 100000, M ≤ 1000000;

对于100%的数据, X ≤ 108


题解:

首先用Tarjon缩点,去重连边,得到新图,那么题目就变成了求图中最长链及最长链个数

最长链可以直接用拓扑排序

最长链个数用一个类似递推的方法

记录每一个点的方案数

那么当前点的方案数就等于连到此点且满足距离相等的点的方案数之和

最后查找距离等于最长链的点,答案为它们的方案数之和

 #include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = ;
char c = getchar();
while('' > c || c > '') c = getchar();
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x;
}
const int me = ;
int n, m, mo;
int x[me], y[me];
int tot;
int de[me], to[me], fir[me], nex[me];
int ue[me];
int si[me];
inline void Ins(int x, int y)
{
nex[++tot] = fir[x];
fir[x] = tot;
to[tot] = y;
}
int num, top, col;
int ti[me], lo[me], st[me], co[me];
inline void Tarjan(int u)
{
ti[u] = lo[u] = ++num;
st[++top] = u;
for(int i = fir[u]; i; i = nex[i])
{
int v = to[i];
if(!ti[v])
{
Tarjan(v);
lo[u] = min(lo[u], lo[v]);
}
else
if(!co[v])
lo[u] = min(lo[u], ti[v]);
}
if(lo[u] == ti[u])
{
co[u] = ++col;
++si[col];
while(st[top] != u)
{
++si[col];
co[st[top]] = col;
--top;
}
--top;
}
}
int t, w;
int ans;
int e[me];
int dis[me];
inline bool rule(int a, int b)
{
if(x[a] != x[b]) return x[a] < x[b];
return y[a] < y[b];
}
int nu[me];
inline void Remove()
{
for(int i = ; i <= m; ++i)
{
nu[i] = i;
x[i] = co[x[i]];
y[i] = co[y[i]];
}
sort(nu + , nu + + m, rule);
}
inline void Build()
{
tot = ;
memset(fir, , sizeof(fir));
for(int i = ; i <= m; ++i)
{
int z = nu[i];
if((x[z] != y[z]) && (x[z] != x[nu[i - ]] || y[z] != y[nu[i - ]]))
{
++de[y[z]];
Ins(x[z], y[z]);
}
}
}
inline void Reset()
{
for(int i = ; i <= col; ++i)
if(!de[i])
{
ue[++w] = i;
dis[i] = si[i];
e[i] = ;
if(dis[ans] < dis[i]) ans = i;
}
}
inline void Topo()
{
while(t < w)
{
int u = ue[++t];
for(int i = fir[u]; i; i = nex[i])
{
int v = to[i];
--de[v];
if(dis[v] < dis[u] + si[v])
{
dis[v] = dis[u] + si[v];
e[v] = ;
if(dis[ans] < dis[v]) ans = v;
}
if(dis[v] == dis[u] + si[v])
e[v] = (e[v] + e[u]) % mo;
if(!de[v]) ue[++w] = v;
}
}
}
int anss;
inline void Ask()
{
for(int i = ; i <= n; ++i)
if(dis[i] == dis[ans])
anss = (anss + e[i]) % mo;
}
int main()
{
n = Get(), m = Get(), mo = Get();
for(int i = ; i <= m; ++i)
{
x[i] = Get(), y[i] = Get();
Ins(x[i], y[i]);
}
for(int i = ; i <= n; ++i)
if(!ti[i])
Tarjan(i);
Remove();
Build();
Reset();
Topo();
Ask();
printf("%d\n%d", dis[ans], anss);
}

最大半连通子图 bzoj 1093的更多相关文章

  1. BZOJ 1093 [ZJOI2007] 最大半连通子图(强联通缩点+DP)

    题目大意 题目是图片形式的,就简要说下题意算了 一个有向图 G=(V, E) 称为半连通的(Semi-Connected),如果满足图中任意两点 u v,存在一条从 u 到 v 的路径或者从 v 到 ...

  2. bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

  3. BZOJ 1093 [ZJOI2007]最大半连通子图

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1986  Solved: 802[Submit][St ...

  4. bzoj 1093 [ZJOI2007]最大半连通子图(scc+DP)

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2286  Solved: 897[Submit][St ...

  5. BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )

    WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...

  6. BZOJ 1093 最大半连通子图 题解

    1093: [ZJOI2007]最大半连通子图 Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 2767  Solved: 1095[Submit][S ...

  7. [BZOJ]1093 最大半连通子图(ZJOI2007)

    挺有意思的一道图论. Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:∀u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v ...

  8. 【刷题】BZOJ 1093 [ZJOI2007]最大半连通子图

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意 两点u,v,存在一条u到v的有向路径或者从v到 ...

  9. bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp

    一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...

随机推荐

  1. interpreter(解释器模式)

    一.引子 其实没有什么好的例子引入解释器模式,因为它描述了如何构成一个简单的语言解释器,主要应用在使用面向对象语言开发编译器中:在实际应用中,我们可能很少碰到去构造一个语言的文法的情况. 虽然你几乎用 ...

  2. APP多版本共存,服务端如何兼容?

    做过APP产品的技术人员都知道,APP应用属于一种C/S架构的,所以在做多版本兼容,升级等处理则比较麻烦,不像web应用那么容易.下面将带大家分析几种常见的情况和应对方式: 小改动或者新加功能的 这种 ...

  3. 【搬砖】安卓入门(1)- Java开发入门

    01.01_计算机基础知识(计算机概述)(了解) A:什么是计算机?计算机在生活中的应用举例 计算机(Computer)全称:电子计算机,俗称电脑.是一种能够按照程序运行,自动.高速处理海量数据的现代 ...

  4. 信息安全-1:python之playfair密码算法详解[原创]

    转发注明出处: http://www.cnblogs.com/0zcl/p/6105825.html 一.基本概念 古典密码是基于字符替换的密码.加密技术有:Caesar(恺撒)密码.Vigenere ...

  5. 浅谈SQL注入风险 - 一个Login拿下Server

    前两天,带着学生们学习了简单的ASP.NET MVC,通过ADO.NET方式连接数据库,实现增删改查. 可能有一部分学生提前预习过,在我写登录SQL的时候,他们鄙视我说:“老师你这SQL有注入,随便都 ...

  6. MySQL常见面试题

    1. 主键 超键 候选键 外键 主 键: 数据库表中对储存数据对象予以唯一和完整标识的数据列或属性的组合.一个数据列只能有一个主键,且主键的取值不能缺失,即不能为空值(Null). 超 键: 在关系中 ...

  7. ubuntu15.04 nginx1.6.5 配置虚拟主机

    1 在/etc/hosts   添加host 2 在/etc/nginx/nginx.conf中查看http里的include ****** /*.conf的路径,在此路径下添加一个新的******. ...

  8. Linux实战教学笔记04:Linux命令基础

    第四节:Linux命令基础 标签(空格分隔):Linux实战教学笔记 第1章 认识操作环境 root:当前登陆的用户名 @分隔符 chensiqi:主机名 -:当前路径位置 用户的提示符 1.1 Li ...

  9. js格式化日期

    /** *对日期进行格式化, * @param date 要格式化的日期 * @param format 进行格式化的模式字符串 * 支持的模式字母有: * y:年, * M:年中的月份(1-12), ...

  10. 我的MYSQL学习心得(十四) 备份和恢复

    我的MYSQL学习心得(十四) 备份和恢复 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) ...