Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) $ \in$AxBxCxD are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
1

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45
Sample Output
5

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

题解:不超时最好。。先枚举a,b,然后检查-(c+d)的值,还是二分优化。

AC代码:

#include <algorithm>
#include <iostream>
using namespace std;
const int Max = + ;
int a[Max],b[Max],c[Max],d[Max];
int ab[];
int total;
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=; i<n; i++)
{
cin>>a[i]>>b[i]>>c[i]>>d[i];
}
int k=;
for(int i=;i<n; i++)
{
for(int j=;j<n; j++)
{
ab[k]=a[i]+b[j];
k++;
}
}
sort(ab,ab+k);
total=;
int s,l,r,mid;
for(int i=; i<n; i++)
{
for(int j=; j<n; j++)
{
int x=-c[i]-d[j];
l=,r=k-;
while(l<=r)
{
mid=(l+r)/;
if(ab[mid]>x)
r=mid-;
else if(ab[mid]<x)
l=mid+;
else
{
for(s=mid;s>=;s--)
{
if(ab[s]==x)
total++;
else
break;
}
for(s=mid+; s<k; s++)
{
if(ab[s]==x)
total++;
else
break;
}
break;
}
}
}
}
cout<<total<<endl;
if(t>)
cout<<endl;
}
return ;
}

UVA1152 4Values whose Sum is 0的更多相关文章

  1. UVA 1152 4 Values whose Sum is 0 (枚举+中途相遇法)(+Java版)(Java手撕快排+二分)

    4 Values whose Sum is 0 题目链接:https://cn.vjudge.net/problem/UVA-1152 ——每天在线,欢迎留言谈论. 题目大意: 给定4个n(1< ...

  2. POJ 2785 4 Values whose Sum is 0(想法题)

    传送门 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 20334   A ...

  3. POJ 2785 4 Values whose Sum is 0

    4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 13069   Accep ...

  4. 哈希-4 Values whose Sum is 0 分类: POJ 哈希 2015-08-07 09:51 3人阅读 评论(0) 收藏

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 17875 Accepted: ...

  5. [poj2785]4 Values whose Sum is 0(hash或二分)

    4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 19322 Accepted: ...

  6. POJ-2785 4 Values whose Sum is 0(折半枚举 sort + 二分)

    题目链接:http://poj.org/problem?id=2785 题意是给你4个数列.要从每个数列中各取一个数,使得四个数的sum为0,求出这样的组合的情况个数. 其中一个数列有多个相同的数字时 ...

  7. K - 4 Values whose Sum is 0(中途相遇法)

    K - 4 Values whose Sum is 0 Crawling in process... Crawling failed Time Limit:9000MS     Memory Limi ...

  8. lintcode 中等题:Submatrix sum is 0 和为零的子矩阵

    和为零的子矩阵 给定一个整数矩阵,请找出一个子矩阵,使得其数字之和等于0.输出答案时,请返回左上数字和右下数字的坐标. 样例 给定矩阵 [ [1 ,5 ,7], [3 ,7 ,-8], [4 ,-8 ...

  9. UVA1152-4 Values whose Sum is 0(分块)

    Problem UVA1152-4 Values whose Sum is 0 Accept: 794  Submit: 10087Time Limit: 9000 mSec Problem Desc ...

随机推荐

  1. hdu 4289 最小割,分拆点为边

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2609 #include <cstdio> #incl ...

  2. hdu 4607 Park Visit (dfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 首先如果k小于等于直径长度,那么答案为k−1.如果k大于直径长度,设直径长度为r,那么答案为r− ...

  3. poj3258

    题目翻译 二分法(其实两个单词的意思分别是河,跳格子游戏,至于为啥翻译成二分法- -只能说英语博大精深啊) 奶牛每年举办一场有特色的跳格子游戏(很明显题目翻译错误)涉及到在河里从一块岩石跳到另一块岩石 ...

  4. 学习restful 架构

    越来越多的人开始意识到,网站即软件,而且是一种新型的软件. 这种"互联网软件"采用客户端/服务器模式,建立在分布式体系上,通过互联网通信,具有高延时(high latency).高 ...

  5. Windows下Postgre SQL数据库通过Slony-I 实现数据库双机同步备份

    一. 我们要实现的环境是windows xp.windows2003上安装Postgre SQL数据库,实现目的是两台数据库服务器进行数据库同步,即数据库同步更新.删除.插入等对数据库的操作. 二. ...

  6. ViewPager切换大量Fragment不刷新的问题

    PagerAdapter,需要重写instantiateItem()加载视图,onDestroy()销毁视图FragmentPagerAdapter,每一个生成的Fargment都保存在内存中,也就是 ...

  7. July收集荷兰国旗问题之三路partition

    这道题目和分成两块的partition的扩展.比如有一堆0 1 2 数字组成的数组,要分成 00 00  11 1 1  222 2这样的顺序的. 利用lumoto版的partition能够非常好的解 ...

  8. [转] 条件变量(Condition Variable)详解

    http://www.wuzesheng.com/?p=1668 条件变量(Condtion Variable)是在多线程程序中用来实现“等待->唤醒”逻辑常用的方法.举个简单的例子,应用程序A ...

  9. iOS 10 个实用小技巧(总有你不知道的和你会用到的)

    在开发过程中我们总会遇到各种各样的小问题,有些小问题并不是十分容易解决.在此我就总结一下,我在开发中遇到的各种小问题,以及我的解决方法.比较普遍的我就不再提了,这里主要讲一些你可能不知道的(当然,也有 ...

  10. 多线程(NSThread、NSOperation、GCD)编程浅谈

    一.基本概念 进程:一个具有一定独立功能的程序关于某个数据集合的一次运行活动.可以理解成一个运行中的应用程序.线程:程序执行流的最小单元,线程是进程中的一个实体.同步:只能在当前线程按先后顺序依次执行 ...