Ural1387 Vasya's Dad
Description
Vasya’s dad is good in maths. Lately his favorite objects have been "beautiful" directed graphs. Dad calls a graph "beautiful" if all the following conditions are true:
- The graph contains exactly \(N\) vertices and \(N−1\) edges.
- Exactly one vertex has no entering edges.
- The graph contains no directed cycles.
Dad calls two "beautiful" graphs isomorphic, if the vertices of the first graph can be renumbered in such way that it turns into the second one.
Dad picks an integer \(N\), stocks up blank paper, and draws a "beautiful" graph on each sheet. He verifies that no two drawn graphs are isomorphic.
Given the number \(N\), you are to find the number of sheets that Vasya's dad has to stock up.
Input
Input contains the single integer \(N (1 \le N \le 50)\).
Output
Output the number of "beautiful" graphs with \(N\) vertices.
Sample Input
3
Sample Output
9
题目大意——求\(N\)个点有标号的有根树的数目是多少。
假设\(a_n\)是\(n\)个点的无标号有根树的数目,则有以下的公式:
\]
其中\(c_k\)表示根节点的子树中大小为\(i\)的子树有多少个。
为什么是\(\binom{a_k+c_k-1}{c_k}\),这是个可重组合公式。我们可以这样考虑,我们现在有\(a_k\)中子树可以选,我们可以从中选出\(c_k\)个。那么我们相当于$$\sum_{i = 1}^{a_k}x_i = c_k$$的非负整数解的方案数。也就等价于
$$\binom{a_k+c_k-1}{a_k-1} = \binom{a_k+c_k-1}{c_k}\]
再用下乘法原理,上述公式就得证了。但是复杂度太高,虽然打表依旧可过。然后我们可以利用生成函数优化公式(母函数),然而这一块我们看懂。wtz说了用了很高深的解析组合的公式。希望以后学了后我能够看懂,先记在这里。
设$$A(x) = \sum_{n = 0}{\infty}a_nxn$$
基于上述分析可以迅速(tm那里迅速了)得到
\]
于是就可推导出:
\]
wtz还告诉了我假如树无根,那么也有公式:
- 当\(n\)是奇数时,答案为$$a_n-\sum_{1 \le i \le \frac{n}{2}}a_ia_{n-i}$$
- 当\(n\)是偶数时,答案为$$a_n-\sum_{1 \le i \le n}a_ia_{n-1}+\frac{1}{2}a_{\frac{n}{2}}(a_{\frac{n}{2}}+1)$$
然后我就用java(因为要高精度)对着公式打,就ac了。
import java.math.*;
import java.util.*;
public class Main
{
static final int maxn = 55;
static BigInteger A[] = new BigInteger[maxn]; static int N;
public static void main(String args[])
{
Scanner cin = new Scanner(System.in);
N = cin.nextInt();
A[1] = BigInteger.valueOf(1);
A[2] = BigInteger.valueOf(1);
A[3] = BigInteger.valueOf(2);
for (int n = 3;n < N;++n)
{
A[n+1] = BigInteger.ZERO;
for (int i = 1;i <= n;++i)
{
BigInteger res; res = BigInteger.ZERO;
for (int j = 1;j <= n/i;++j) res = res.add(A[n+1-i*j]);
A[n+1] = A[n+1].add(res.multiply(A[i]).multiply(BigInteger.valueOf(i)));
}
A[n+1] = A[n+1].divide(BigInteger.valueOf(n));
}
System.out.println(A[N]);
}
}
Ural1387 Vasya's Dad的更多相关文章
- Milliard Vasya's Function-Ural1353动态规划
Time limit: 1.0 second Memory limit: 64 MB Vasya is the beginning mathematician. He decided to make ...
- CF460 A. Vasya and Socks
A. Vasya and Socks time limit per test 1 second memory limit per test 256 megabytes input standard i ...
- 递推DP URAL 1353 Milliard Vasya's Function
题目传送门 /* 题意:1~1e9的数字里,各个位数数字相加和为s的个数 递推DP:dp[i][j] 表示i位数字,当前数字和为j的个数 状态转移方程:dp[i][j] += dp[i-1][j-k] ...
- Codeforces Round #281 (Div. 2) D. Vasya and Chess 水
D. Vasya and Chess time limit per test 2 seconds memory limit per test 256 megabytes input standard ...
- Codeforces Round #281 (Div. 2) C. Vasya and Basketball 二分
C. Vasya and Basketball time limit per test 2 seconds memory limit per test 256 megabytes input stan ...
- codeforces 676C C. Vasya and String(二分)
题目链接: C. Vasya and String time limit per test 1 second memory limit per test 256 megabytes input sta ...
- Where is Vasya?
Where is Vasya? Vasya stands in line with number of people p (including Vasya), but he doesn't know ...
- Codeforces Round #324 (Div. 2) C. Marina and Vasya 贪心
C. Marina and Vasya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pr ...
- Codeforces Round #322 (Div. 2) A. Vasya the Hipster 水题
A. Vasya the Hipster Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/581/p ...
随机推荐
- [原] Unity下的ElectroServer的连接
ES的版本是5.4.1,示例目录下code_examples\ConnectAndLoginManually是Unity的连接和登录代码. 除了host和port需要指定,在连接时需要指定连接方式,如 ...
- Thinkphp twig
参考链接:thinkphp的twig模板实现 使用composer安裝好Thinkphp 3.2.3 composer create-project topthink/thinkphp your-pr ...
- Java基础环境搭建
- Android——按钮的事件监听
关于Button按钮的四种事件监听方法总结 首先我们在activity_main.xml里面先定义一个Button空间 <RelativeLayout xmlns:android="h ...
- 获取或设置checkbox radio select的值
单选: 获取值:$("input[name='rdo']:checked").val(); 设置值:$("input[name='rdo'][value='3']&quo ...
- 牛客_剑指offer_重建二叉树,再后续遍历_递归思想_分两端
总结: 重建二叉树:其实就是根据前序和中序重建得到二叉树,得到后续,只要输出那边设置输出顺序即可 [编程题]重建二叉树 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的 ...
- HW--字符串加解密
package t0817; import java.util.Scanner; public class StringEncrypt { public static void main(String ...
- C# IO操作(三)文件编码
在.net环境下新建一个文本文件(所谓文本文件就是直接可以用记事本打开的文件,直接保存字符串)和在系统中新建一个文本文件的编码是不一样的,.net默认采用UTF-8,而中文操作系统采用的是ANSI.如 ...
- ###《Effective STL》--Chapter6
点击查看Evernote原文. #@author: gr #@date: 2014-09-27 #@email: forgerui@gmail.com Chapter6 函数子.函数子类.函数及其他 ...
- 元素exist/present/visible(vanish)/enable的区别
一.判断元素exist/present/visible(vanish)/enable的区别: 1.首先,从selenium代码上来区别: 1)exist/present表示元素个数是否大于0 Li ...