POJ1840: Eqs(hash问题)
一道典型的hash问题:
已知a1,a2,a3,a4,a5,求有多少种不同的<x1,x2,x3,x4,x5>组合满足等式:
a1*x1^3 + a2*x2^3 + a3*x3^3 + a4*x4^3 + a5*x5^3 = 0
一种做法是暴力枚举,但因为xi∈[-50,-1)(1,50],所以暴力枚举时间为O(100^5),显然不可行。
所以只能用hash方法:
我们可以讲前两项 a1*x1^3 + a2*x2^3 的所有可能多项式结果SUM运算出来,并将这些SUM映射到hash表上。因为可能存在不同的<x1,x2>元组,但他们的SUM相同,会映射到hash表上相同的indice上,对于这种情况,我们采用hash[<x1,x2>::SUM]++的处理方式,最终hash表上所有indice上hash值不为0的值相加就是前两项所有可能的SUM。同时,因为存在运算结果为负值的情况,(因为ai, xi都∈[-50,-1)(1,50],所以前两项的SUM∈[-12500000,12500000]。为了不让映射的下标为负数,当SUM>=0时,KEY=SUM;当SUM<0时,KEY=SUM+12500000. 同时为了保证所有可能的SUM都能够hash到表上的indice,hash数组的规模需开到25000001.
--------------------------------------------------------------------------------------
然后我们继续枚举下面三项a3*x3^3 + a4*x4^3 + a5*x5^3 的所有可能SUM并求出KEY,
KEY一样采用上面的做法:当SUM>=0时,KEY=SUM;当SUM<0时,KEY=SUM+12500000.
当我们用(-KEY)去查hash表时,如果hash[0-KEY]>0,说明hash表上有记录,也意味着当前枚举的三元组<x3,x4,x5>找到了一个<x1,x2>使得整体的SUM=0,即找到一个方程的解。统计解的个数即为最终结果。
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<map>
#include<vector>
using namespace std;
const int max_size=;
short hsh[max_size];
int a1,a2,a3,a4,a5,ans;
int main(){
scanf("%d%d%d%d%d",&a1,&a2,&a3,&a4,&a5);
ans=;
memset(hsh,,sizeof(hsh));
for(int i=-;i<=;i++){
if(!i) continue;
for(int j=-;j<=;j++){
if(!j) continue;
int sum=;
for(int k=-;k<=;k++){
if(!k) continue;
sum=(-)*(i*i*i*a1+j*j*j*a2+k*k*k*a3);
if(sum<) sum+=max_size;
hsh[sum]++;
}
}
}
for(int i=-;i<=;i++){
if(!i) continue;
int sum=;
for(int j=-;j<=;j++){
if(!j) continue;
sum=i*i*i*a4+j*j*j*a5;
if(sum<) sum+=max_size;
if(hsh[sum]) ans+=hsh[sum];
}
}
printf("%d\n",ans);
}
POJ1840: Eqs(hash问题)的更多相关文章
- poj1840 Eqs(hash+折半枚举)
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- POJ1840 Eqs
题意描述 Eqs 求一个五元方程 \(a_1x_1^3+a_2x_2^3+a_3x_3^3+a_4x_4^3+a_5x_5^3=0\) 的解的个数. 题中给出 \(a_i\) 的值并且保证 \(-50 ...
- POJ 1840 Eqs(hash)
题意 输入a1,a2,a3,a4,a5 求有多少种不同的x1,x2,x3,x4,x5序列使得等式成立 a,x取值在-50到50之间 直接暴力的话肯定会超时的 100的五次方 10e了都 ...
- POJ 1840 Eqs 二分+map/hash
Description Consider equations having the following form: a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 The co ...
- poj 1840 Eqs (hash)
题目:http://poj.org/problem?id=1840 题解:http://blog.csdn.net/lyy289065406/article/details/6647387 小优姐讲的 ...
- POJ1840 hash
POJ1840 问题重述: 给定系数a1,a2, ..,a5,求满足a1 * x1 ^ 3 + a2 * x2 ^ 3 +... + a5 * x5 ^ 3 = 0的 xi 的组数.其中ai, xi都 ...
- Eqs - poj 1840(hash)
题意:对于方程:a1x13+ a2x23+ a3x33+ a4x43+ a5x53=0 ,有xi∈[-50,50], xi != 0, any i∈{1,2,3,4,5}. 现在给出a1,a2,a3, ...
- Eqs(枚举+ hash)
http://poj.org/problem?id=1840 题意:给出系数a1,a2,a3,a4,a5,求满足方程的解有多少组. 思路:有a1x13+ a2x23+ a3x33+ a4x43+ a5 ...
- POJ 1840 Eqs
Eqs Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 15010 Accepted: 7366 Description ...
随机推荐
- 3.bit-map
适用范围:可进行数据的快速查找,判重,删除,一般来说数据范围是int的10倍以下 基本原理及要点:使用bit数组来表示某些元素是否存在,比如8位电话号码 扩展:bloom filter可以看做是对bi ...
- JAVA程序性能分析及调优浅析
1.性能分析本质 寻找系统的性能瓶颈(木桶理论/短板效应),并处理系统的性能瓶颈 2.性能分析主要指标负载.响应和服务器CPU\MEM等的使用率 3.性能分析主要工具 LoadRunner Visua ...
- 分别用js和jq实现百度全选反选效果
js实现过程 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UT ...
- HAProxy 的负载均衡服务器,Redis 的缓存服务器
问答社区网络 StackExchange 由 100 多个网站构成,其中包括了 Alexa 排名第 54 的 StackOverflow.StackExchang 有 400 万用户,每月 5.6 亿 ...
- mysql 自定义排序顺序
mysql 自定义排序顺序 实例如:在sql语句中加入ORDER BY FIELD(status,3,4,0,2,1)语句可定义排序顺序 SELECT tsdvoucher0_.VOUCHER_ID ...
- 备忘·添加SublimeText3右键菜单
因为用的sublimeText3是免安装版,打开未关联文件,略有麻烦,所以搜了一下,发现几种解决办法,其中INF文件的方法很喜欢,备份下 [Version] Signature="$Wind ...
- Activiti的Eclipse插件离线安装指南
原文地址:http://www.tuicool.com/articles/yUnURjy
- 从 C++ 到 Qt(命令行编译)good
从 C++ 到 Qt 转载自:http://hi.baidu.com/cyclone/blog/item/8f8f08fa52d22f8758ee9006.html Qt 是 C++ 的库,Qt在an ...
- leetcode面试准备: Word Pattern
leetcode面试准备: Word Pattern 1 题目 Given a pattern and a string str, find if str follows the same patte ...
- 【Pyhton Network】使用poll()或select()实现非阻塞传输
通常情况下,socket上的I/O会阻塞.即除非操作结束,否则程序不会照常进行.而以下集中情况需要在非阻塞模式下进行:1. 网络接口在等待数据时是活动的,可以做出相应:2. 在不使用线程或进程的情况下 ...