数据源格式描述:

输入t1.txt源数据,数据文件分隔符”*&*”,字段说明如下:

字段序号 字段英文名称 字段中文名称 字段类型 字段长度
1 TIME_ID 时间(到时) 字符型 12
2 Session 会话时长 数值型 8
3 MSISDN 用户号码 字符型 11
4 SP_DOMAIN SP域名 数值型 64
5 USER_AGENT_ORIGN 终端字串 字符型 128
6 USER_AGENT 终端类别 字符型 64
7 UPSTREAM_VOL 上行流量 数值型 8
8 DOWNSTREAM_VOL 下行流量 数值型 8
9 URL_CNT 访问次数 数值型 20

用mapreduce实现单表汇总:

在数据源的基础上,根据终端类型汇总出总流量及访问次数。汇总模型字段说明如下:

字段序号 字段英文名称 字段中文名称 字段类型 字段长度
1 USER_AGENT 终端类型 字符型
2 TOT_FLUX 总流量 数值型 30
3 URL_CNT 访问次数 数值型 30

代码如下:

package mianshi;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

import com.google.protobuf.TextFormat;

public class Test1 {

/**
     * @param args
     * @throws IOException
     * @throws InterruptedException
     * @throws ClassNotFoundException
     */
    public static void main(String[] args) throws Exception {
        //创建配置文件
        Configuration conf=new Configuration();
        //创建job
        Job job = new Job(conf,Test1.class.getName());
        //设置jar包运行
        job.setJarByClass(Test1.class);
        //设置输入路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        //设置输入格式
        job.setInputFormatClass(TextInputFormat.class);
        //设置自定义Mapper
        job.setMapperClass(MyMapper.class);
        //设置Map输出的Value类型,也就是V2
        job.setMapOutputValueClass(Model.class);
        //设置Map输出的Key类型,也就是K2
        job.setMapOutputKeyClass(Text.class);
        //设置分区类型
        job.setPartitionerClass(HashPartitioner.class);
        //设置Rudece任务数
        job.setNumReduceTasks(1);
        //设置自定义Reduce类
        job.setReducerClass(MyReducer.class);
        //设置输出K3的类型
        job.setOutputKeyClass(Text.class);
        //设置输出的V3类型
        job.setOutputValueClass(Model.class);
        //设置输出的格式
        job.setOutputFormatClass(TextOutputFormat.class);
        //指定输出路径
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        //提交job
        job.waitForCompletion(true);

}
    static class MyMapper extends Mapper<LongWritable, Text, Text, Model>{
        @Override
        protected void map(LongWritable k1, Text v1,Context context)
                throws IOException, InterruptedException {
            /**
             * 切割字符串有点意思!
             * “*”是特殊字符,需要用[]
             * "&"需要用\\转义
             *
             *    
             */
            String[] split = v1.toString().split("[*]\\&[*]");
            Text user_agent = new Text(split[5]);
            Long tot_flux = new Long(split[6])+new Long(split[7]);
            Long url_cnt = new Long(split[8]);
            Model v2 = new Model(tot_flux, url_cnt);
            context.write(user_agent, v2);
           
        }
    }
   
    static class MyReducer extends Reducer<Text, Model, Text, Model>{
       
        @Override
        protected void reduce(Text k2, Iterable<Model> v2s,Context context)
                throws IOException, InterruptedException {
           
            //定义计数器
            long sum_flux =0L;
            long sum_url = 0L;
            for(Model model : v2s){
                sum_flux += model.tot_flux;
                sum_url += model.url_cnt;
            }
            Model v3 = new Model(sum_flux,sum_url);
            context.write(k2, v3);
        }
       
    }

}

/**
* 自定义类型必须实现Writable
* @author Sky
*
*/
class Model implements Writable{
   
    long tot_flux;
    long url_cnt;
   
    public Model(){}
    public Model(Long tot_flux,Long url_cnt){
        this.tot_flux = tot_flux;
        this.url_cnt = url_cnt;
    }

public void write(DataOutput out) throws IOException {
        //序列化出去
        out.writeLong(tot_flux);
        out.writeLong(url_cnt);
    }

public void readFields(DataInput in) throws IOException {
        //和序列化出去的一样
        this.tot_flux = in.readLong();
        this.url_cnt = in.readLong();
       
    }
   
    //必须覆写toString方法,否则输出的值是内存值
    @Override
    public String toString() {
        return tot_flux+"\t"+url_cnt;
    }
   
   
}

文章参考论坛:超人hadoop网络学院论坛

Hadoop工程师面试题(1)--MapReduce实现单表汇总统计的更多相关文章

  1. Hadoop on Mac with IntelliJ IDEA - 8 单表关联NullPointerException

    简化陆喜恒. Hadoop实战(第2版)5.4单表关联的代码时遇到空指向异常,经分析是逻辑问题,在此做个记录. 环境:Mac OS X 10.9.5, IntelliJ IDEA 13.1.5, Ha ...

  2. Hadoop案例(七)MapReduce中多表合并

    MapReduce中多表合并案例 一.案例需求 订单数据表t_order: id pid amount 1001 01 1 1002 02 2 1003 03 3 订单数据order.txt 商品信息 ...

  3. 20180518VSTO多簿单表汇总外接程序按钮

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsof ...

  4. 20180518VSTO多簿单表汇总

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsof ...

  5. Hadoop阅读笔记(三)——深入MapReduce排序和单表连接

    继上篇了解了使用MapReduce计算平均数以及去重后,我们再来一探MapReduce在排序以及单表关联上的处理方法.在MapReduce系列的第一篇就有说过,MapReduce不仅是一种分布式的计算 ...

  6. MapReduce应用案例--单表关联

    1. 实例描述 单表关联这个实例要求从给出的数据中寻找出所关心的数据,它是对原始数据所包含信息的挖掘. 实例中给出child-parent 表, 求出grandchild-grandparent表. ...

  7. Web前端开发工程师面试题

    Web前端开发工程师面试题1.说说css的优先级?2.在移动端中,常常使用tap作为点击事件,好处是?会带来什么问题?3.原生JS的window,onload与Jquery的$(document).r ...

  8. Hadoop介绍及最新稳定版Hadoop 2.4.1下载地址及单节点安装

     Hadoop介绍 Hadoop是一个能对大量数据进行分布式处理的软件框架.其基本的组成包括hdfs分布式文件系统和可以运行在hdfs文件系统上的MapReduce编程模型,以及基于hdfs和MapR ...

  9. MapReduce编程系列 — 5:单表关联

    1.项目名称: 2.项目数据: chile    parentTom    LucyTom    JackJone    LucyJone    JackLucy    MaryLucy    Ben ...

随机推荐

  1. 两个不同于LR和jmeter的性能测试工具

    LR图形界面,更利于使用 jmeter采用java,也能够扩展 相对于上两款工具,下面两款性能测试工具都采用了异步IO模型,扩展性都更强速度也更快 gatling:基于scala,速度相比更快性能压力 ...

  2. EasyUI portal自定义小图标,不是用js方式加载

    <script src="~/Scripts/jquery.portal.js"></script> <script> $(function ( ...

  3. MongoDB应用详解

    mongodb是一个用来存储管理数据的软件 他是一个 c/s 架构的软件,是一个网络类型的软件如果要是使用mongodb的话,首先需要开启mongodb的服务端,然后通过客户端软件去连接服务器 1.要 ...

  4. C#.NET连接mysql方法

    C#访问MySQL数据库的方法 (1)首先需要下载C#访问MySQL数据库的ADO.NET驱动程序 下载地址为: http://dev.mysql.com/downloads/connector/ne ...

  5. Firefly官方教程之Netconnect使用文档

    1.distributed说明该模块包含了服务端与客户端通信的一些处理方法,包括发送数据的封装,协议头的封装,tcp通信时进行分包,处理粘包问题.2.结构解析 LiberateFactory,协议工厂 ...

  6. *[topcoder]LittleElephantAndBalls

    http://community.topcoder.com/stat?c=problem_statement&pm=12758&rd=15704 topcoder的题经常需要找规律,而 ...

  7. dojo自定义Widget

    使dojo AMD规范进行widget 定义,开始的时候一直找不到自己定义的widget模块的位置,经过探索,总算有收获,我这个人有毛病,脑子里不允许有一些想不通的问题,一旦有了问题,就非常难受,心里 ...

  8. hadoop2.2编程:MRUnit——Test MaxTemperatureMapper

    继承关系1 1. java.lang.Object |__ org.apache.hadoop.mapreduce.JobContext |__org.apache.hadoop.mapreduce. ...

  9. 【转】CString类型互转 int

    CString类型互转 int 原文网址:http://www.cnitblog.com/Hali/archive/2009/06/25/59632.html CString类型的转换成int  将字 ...

  10. 对象、对象数组、JSON、JSON数组的相关操作

    本文主要是对JS操作JSON的要领做下总结在JSON中,有两种结构:对象和数组 1. 一个对象以“{”(左括号)开始,“}”(右括号)结束.每个“名称”后跟一个“:”(冒号):“"名称/值& ...