Marcin Dymczyk, Igor Gilitschenski, Juan Nieto, Simon Lynen, Bernhard Zeis, and Roland Siegwart

LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization

LandmarkBoost:用于鲁棒定位的高效的视觉上下文分类器
Abstract—The growing popularity of autonomous systems creates a need for reliable and efficient metric pose retrieval algorithms. Currently used approaches tend to rely on nearest neighbor search of binary descriptors to perform the 2D3D matching and guarantee realtime capabilities on mobile platforms. These methods struggle, however, with the growing size of the map, changes in viewpoint or appearance, and visual aliasing present in the environment. The rigidly defined descriptor patterns only capture a limited neighborhood of the keypoint and completely ignore the overall visual context.
We propose LandmarkBoost – an approach that, in contrast to the conventional 2D-3D matching methods, casts the search problem as a landmark classification task. We use a boosted classifier to classify landmark observations and directly obtain correspondences as classifier scores. We also introduce a formulation of visual context that is flexible, efficient to compute, and can capture relationships in the entire image plane. The original binary descriptors are augmented with contextual information and informative features are selected by the boosting framework. Through detailed experiments, we evaluate the retrieval quality and performance of LandmarkBoost, demonstrating that it outperforms common state-of-theart descriptor matching methods.
自治系统的日益普及产生了对可靠和有效的度量姿势检索算法的需求。当前使用的方法倾向于依赖二进制描述符的最近邻搜索来执行2D3D匹配并保证移动平台上的实时能力。然而,这些方法与地图的大小增加,视点或外观的变化以及环境中存在的视觉混叠相矛盾。
我们提出LandmarkBoost--与传统的2D-3D匹配方法相比,这种方法将搜索问题作为标志性的分类任务。

我们使用提升的分类器对具有里程碑意义的观察进行分类,并直接获得对应关系作为分类分数。我们还介绍了一种灵活的视觉上下文,能够有效地计算,并且可以捕捉整个图像平面中的关系。 原始二进制描述符用上下文信息增强,并且增强框架选择信息特征。通过详细的实验,我们评估了LandmarkBoost的检索质量和性能,证明它优于常见的描述符匹配方法。

 

泡泡一分钟:LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization的更多相关文章

  1. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  2. 论文阅读笔记二十:LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation(CVPR2017)

    源文网址:https://arxiv.org/abs/1707.03718 tensorflow代码:https://github.com/luofan18/linknet-tensorflow 基于 ...

  3. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  4. 泡泡一分钟:Fast and Robust Initialization for Visual-Inertial SLAM

    张宁  Fast and Robust Initialization for Visual-Inertial SLAM链接:https://pan.baidu.com/s/1cdkuHdkSi9x7l ...

  5. 泡泡一分钟:Robust and Fast 3D Scan Alignment Using Mutual Information

    Robust and Fast 3D Scan Alignment Using Mutual Information 使用互信息进行稳健快速的三维扫描对准 https://arxiv.org/pdf/ ...

  6. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

  7. 泡泡一分钟:Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation Using Minimal Solutions

    张宁 Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation ...

  8. 泡泡一分钟:Context-Aware Modelling for Augmented Reality Display Behaviour

    张宁 Context-Aware Modelling for Augmented Reality Display Behaviour链接:https://pan.baidu.com/s/1RpX6kt ...

  9. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

随机推荐

  1. destoon自定义函数获取地区名称

    需要在api/extend.func.php 文件中加入的函数 获取地区名称 area_name($areaid) 传入地区id function area_name($areaid) { globa ...

  2. python读取excel的内容

    import csvimport xlrdimport xlwt def handler_excel(filename=r'd:\\wu.xlsx'): # 打开文件 workbook = xlrd. ...

  3. new char()与new char[]区别

    char *pc = new char(15); //开辟一个内存单元,并用括号里的初始化(用15来初始化你定义的指针所指向的那个char)char *pc = new char[15]; //开辟一 ...

  4. Linux命令基础6-mkdir命令

    mkdir是英文单词make directory的缩写.mkdir就是用来创建路径,一般就是用来创建文件夹的. 语法 mkdir (选项)(参数) 选项 -Z:设置安全上下文,当使用SELinux时有 ...

  5. python django -在setting 设定全局时间格式

    工作中遇到需要全局设定时间的格式,再此马克下 USE_L10N = False DATE_FORMAT = 'Y-m-d' DATETIME_FORMAT = 'Y年m月'

  6. Oracle CAST() 函数 数据类型的转换

    CAST()函数可以进行数据类型的转换. CAST()函数的参数有两部分,源值和目标数据类型,中间用AS关键字分隔. 以下例子均通过本人测试. 一.转换列或值 语法:cast( 列名/值 as 数据类 ...

  7. C# 可为空?及(??、?. )

    可空类型修饰符(?): 引用类型可以使用空引用表示一个不存在的值,而值类型通常不能表示为空. 例如:string str=null; 是正确的,int i=null; 编译器就会报错. 为了使值类型也 ...

  8. admin站点管理

    admin中的显示 class Saltstack_GroupAdmin(admin.ModelAdmin): list_display = ['group_name','salt_minion_id ...

  9. 【mysql】连接和断开服务器

    [mysql]连接和断开服务器 #启动服务: $sudo service mysql start #停止服务: $sudo service mysql stop 要连接到服务器,我们通常需要提供MyS ...

  10. vundle 管理插件

    前言:如果不使用vundle的话,进行插件的安装,配置和管理相对会麻烦,曾经没使用vundle的时候我经常遇到无法安装一些vim插件.但使用vundle后你只要在文件中添加一行你的插件名再安装就OK了 ...