Marcin Dymczyk, Igor Gilitschenski, Juan Nieto, Simon Lynen, Bernhard Zeis, and Roland Siegwart

LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization

LandmarkBoost:用于鲁棒定位的高效的视觉上下文分类器
Abstract—The growing popularity of autonomous systems creates a need for reliable and efficient metric pose retrieval algorithms. Currently used approaches tend to rely on nearest neighbor search of binary descriptors to perform the 2D3D matching and guarantee realtime capabilities on mobile platforms. These methods struggle, however, with the growing size of the map, changes in viewpoint or appearance, and visual aliasing present in the environment. The rigidly defined descriptor patterns only capture a limited neighborhood of the keypoint and completely ignore the overall visual context.
We propose LandmarkBoost – an approach that, in contrast to the conventional 2D-3D matching methods, casts the search problem as a landmark classification task. We use a boosted classifier to classify landmark observations and directly obtain correspondences as classifier scores. We also introduce a formulation of visual context that is flexible, efficient to compute, and can capture relationships in the entire image plane. The original binary descriptors are augmented with contextual information and informative features are selected by the boosting framework. Through detailed experiments, we evaluate the retrieval quality and performance of LandmarkBoost, demonstrating that it outperforms common state-of-theart descriptor matching methods.
自治系统的日益普及产生了对可靠和有效的度量姿势检索算法的需求。当前使用的方法倾向于依赖二进制描述符的最近邻搜索来执行2D3D匹配并保证移动平台上的实时能力。然而,这些方法与地图的大小增加,视点或外观的变化以及环境中存在的视觉混叠相矛盾。
我们提出LandmarkBoost--与传统的2D-3D匹配方法相比,这种方法将搜索问题作为标志性的分类任务。

我们使用提升的分类器对具有里程碑意义的观察进行分类,并直接获得对应关系作为分类分数。我们还介绍了一种灵活的视觉上下文,能够有效地计算,并且可以捕捉整个图像平面中的关系。 原始二进制描述符用上下文信息增强,并且增强框架选择信息特征。通过详细的实验,我们评估了LandmarkBoost的检索质量和性能,证明它优于常见的描述符匹配方法。

 

泡泡一分钟:LandmarkBoost: Efficient Visual Context Classifiers for Robust Localization的更多相关文章

  1. 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area

    A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...

  2. 论文阅读笔记二十:LinkNet: Exploiting Encoder Representations for Efficient Semantic Segmentation(CVPR2017)

    源文网址:https://arxiv.org/abs/1707.03718 tensorflow代码:https://github.com/luofan18/linknet-tensorflow 基于 ...

  3. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  4. 泡泡一分钟:Fast and Robust Initialization for Visual-Inertial SLAM

    张宁  Fast and Robust Initialization for Visual-Inertial SLAM链接:https://pan.baidu.com/s/1cdkuHdkSi9x7l ...

  5. 泡泡一分钟:Robust and Fast 3D Scan Alignment Using Mutual Information

    Robust and Fast 3D Scan Alignment Using Mutual Information 使用互信息进行稳健快速的三维扫描对准 https://arxiv.org/pdf/ ...

  6. 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps

    Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...

  7. 泡泡一分钟:Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation Using Minimal Solutions

    张宁 Visual Odometry Using a Homography Formulation with Decoupled Rotation and Translation Estimation ...

  8. 泡泡一分钟:Context-Aware Modelling for Augmented Reality Display Behaviour

    张宁 Context-Aware Modelling for Augmented Reality Display Behaviour链接:https://pan.baidu.com/s/1RpX6kt ...

  9. 泡泡一分钟:Automatic Parameter Tuning of Motion Planning Algorithms

    Automatic Parameter Tuning of Motion Planning Algorithms 运动规划算法的自动参数整定 Jos´e Cano, Yiming Yang, Brun ...

随机推荐

  1. JDK源码那些事儿之DelayQueue

    作为阻塞队列的一员,DelayQueue(延迟队列)由于其特殊含义而使用在特定的场景之中,主要在于Delay这个词上,那么其内部是如何实现的呢?今天一起通过DelayQueue的源码来看一看其是如何完 ...

  2. destoon7.0后台栏目分类一键获取所有栏目拼音目录

    近期研究DT,从DT4.0一直研究到DT7.0,总算也有些心得.最近重新开发设计了一个信息资讯站点:http://www.xuetong365.com/ 废话不多说,上教程 用于DESTOON7.0系 ...

  3. EPL II 编程打印

    一.EPL II 格式及打印测试 注意N命令前的换行和最后P1后的换行.将此段代码复制到windows记事本里另存为Print.ext,文件名随便,后缀为ext.然后通过cmd控制命令行输入" ...

  4. JAVA中使用Dom解析XML

    在G盘下新建XML文档:person.xml,XML代码: <?xml version="1.0" encoding="utf-8"?> <s ...

  5. PostgreSQL 输出 JSON 结果

    PostGreSQL 从 9.2 开始增加对 JSON 的支持.9.5 已经支持多个 JSON 函数,见 http://www.postgres.cn/docs/9.5/functions-json. ...

  6. learning java AWT MenuBar Menu MenuItem菜单

    import java.awt.*; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import java ...

  7. leetcode解题报告(30):Detect Capital

    描述 Given a word, you need to judge whether the usage of capitals in it is right or not. We define th ...

  8. bee api new

    bee api appcode -conn="root:root@tcp(127.0.0.1:3306)/test"

  9. 深入理解volatile原理与使用

    volatile:称之为轻量级锁,被volatile修饰的变量,在线程之间是可见的. 可见:一个线程修改了这个变量的值,在另一个线程中能够读取到这个修改后的值. synchronized除了线程之间互 ...

  10. CRMEB中因为重写规则导致的服务器异常和404之解决办法

    问题描述:安装CRMEB后,只能通过https://域名//index.php/admin访问到后台,而不能直接通过https://域名/admin访问到后台,以至于导致进入系统后台出现有的功能界面可 ...