一、什么是Disruptor

Martin Fowler在自己网站上写了一篇LMAX架构的文章,在文章中他介绍了LMAX是一种新型零售金融交易平台,它能够以很低的延迟产生大量交易。这个系统是建立在JVM平台上,其核心是一个业务逻辑处理器,它能够在一个线程里每秒处理6百万订单。业务逻辑处理器完全是运行在内存中,使`用事件源驱动方式。业务逻辑处理器的核心是Disruptor。

Disruptor它是一个开源的并发框架,并获得2011 Duke’s 程序框架创新奖,能够在无锁的情况下实现网络的Queue并发操作。

Disruptor是一个高性能的异步处理框架,或者可以认为是最快的消息框架(轻量的JMS),也可以认为是一个观察者模式的实现,或者事件监听模式的实现。

在使用之前,首先说明disruptor主要功能加以说明,你可以理解为他是一种高效的"生产者-消费者"模型。也就性能远远高于传统的BlockingQueue容器。

在JDK的多线程与并发库一文中, 提到了BlockingQueue实现了生产者-消费者模型

BlockingQueue是基于锁实现的, 而锁的效率通常较低. 有没有使用CAS机制实现的生产者-消费者

Disruptor使用观察者模式, 主动将消息发送给消费者, 而不是等消费者从队列中取; 在无锁的情况下, 实现queue(环形, RingBuffer)的并发操作, 性能远高于BlockingQueue

二、Disruptor的设计方案

Disruptor通过以下设计来解决队列速度慢的问题:

  • 环形数组结构:

    为了避免垃圾回收,采用数组而非链表。同时,数组对处理器的缓存机制更加友好。
  • 元素位置定位:

    数组长度2^n,通过位运算,加快定位的速度。下标采取递增的形式。不用担心index溢出的问题。index是long类型,即使100万QPS的处理速度,也需要30万年才能用完。
  • 无锁设计:

    每个生产者或者消费者线程,会先申请可以操作的元素在数组中的位置,申请到之后,直接在该位置写入或者读取数据。

三、Disruptor实现生产与消费

1、Pom Maven依赖信息

	<dependencies>
<dependency>
<groupId>com.lmax</groupId>
<artifactId>disruptor</artifactId>
<version>3.2.1</version>
</dependency>
</dependencies>

2、首先声明一个Event来包含需要传递的数据:

//定义事件event  通过Disruptor 进行交换的数据类型。
public class LongEvent { private Long value; public Long getValue() {
return value;
} public void setValue(Long value) {
this.value = value;
} }

3、需要让Disruptor为我们创建事件,我们同时还声明了一个EventFactory来实例化Event对象。

public class LongEventFactory implements EventFactory<LongEvent> {

	public LongEvent newInstance() {

		return new LongEvent();
} }

4、事件消费者,也就是一个事件处理器。这个事件处理器简单地把事件中存储的数据打印到终端:

public class LongEventHandler implements EventHandler<LongEvent>  {

	public void onEvent(LongEvent event, long sequence, boolean endOfBatch) throws Exception {
System.out.println("消费者:"+event.getValue());
} }

5、定义生产者发送事件

public class LongEventProducer {

	public final RingBuffer<LongEvent> ringBuffer;

	public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {
this.ringBuffer = ringBuffer;
} public void onData(ByteBuffer byteBuffer) {
// 1.ringBuffer 事件队列 下一个槽
long sequence = ringBuffer.next();
Long data = null;
try {
//2.取出空的事件队列
LongEvent longEvent = ringBuffer.get(sequence);
data = byteBuffer.getLong(0);
//3.获取事件队列传递的数据
longEvent.setValue(data);
try {
Thread.sleep(10);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
} finally {
System.out.println("生产这准备发送数据");
//4.发布事件
ringBuffer.publish(sequence); }
} }

6、main函数执行调用

public class DisruptorMain {

	public static void main(String[] args) {
// 1.创建一个可缓存的线程 提供线程来出发Consumer 的事件处理
ExecutorService executor = Executors.newCachedThreadPool();
// 2.创建工厂
EventFactory<LongEvent> eventFactory = new LongEventFactory();
// 3.创建ringBuffer 大小
int ringBufferSize = 1024 * 1024; // ringBufferSize大小一定要是2的N次方
// 4.创建Disruptor
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(eventFactory, ringBufferSize, executor,
ProducerType.SINGLE, new YieldingWaitStrategy());
// 5.连接消费端方法
disruptor.handleEventsWith(new LongEventHandler());
// 6.启动
disruptor.start();
// 7.创建RingBuffer容器
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
// 8.创建生产者
LongEventProducer producer = new LongEventProducer(ringBuffer);
// 9.指定缓冲区大小
ByteBuffer byteBuffer = ByteBuffer.allocate(8);
for (int i = 1; i <= 100; i++) {
byteBuffer.putLong(0, i);
producer.onData(byteBuffer);
}
//10.关闭disruptor和executor
disruptor.shutdown();
executor.shutdown();
} }

四、什么是ringbuffer

它是一个环(首尾相接的环),你可以把它用做在不同上下文(线程)间传递数据的buffer。

基本来说,ringbuffer拥有一个序号,这个序号指向数组中下一个可用的元素。(校对注:如下图右边的图片表示序号,这个序号指向数组的索引4的位置。)

随着你不停地填充这个buffer(可能也会有相应的读取),这个序号会一直增长,直到绕过这个环。

要找到数组中当前序号指向的元素,可以通过mod操作:

以上面的ringbuffer为例(java的mod语法):12 % 10 = 2。很简单吧。 事实上,上图中的ringbuffer只有10个槽完全是个意外。如果槽的个数是2的N次方更有利于基于二进制

优点

之所以ringbuffer采用这种数据结构,是因为它在可靠消息传递方面有很好的性能。这就够了,不过它还有一些其他的优点。

首先,因为它是数组,所以要比链表快,而且有一个容易预测的访问模式。(译者注:数组内元素的内存地址的连续性存储的)。这是对CPU缓存友好的—也就是说,在硬件级别,数组中的元素是会被预加载的,因此在ringbuffer当中,cpu无需时不时去主存加载数组中的下一个元素。(校对注:因为只要一个元素被加载到缓存行,其他相邻的几个元素也会被加载进同一个缓存行)

其次,你可以为数组预先分配内存,使得数组对象一直存在(除非程序终止)。这就意味着不需要花大量的时间用于垃圾回收。此外,不像链表那样,需要为每一个添加到其上面的对象创造节点对象—对应的,当删除节点时,需要执行相应的内存清理操作。

RingBuffer底层实现

RingBuffer是一个首尾相连的环形数组,所谓首尾相连,是指当RingBuffer上的指针越过数组是上界后,继续从数组头开始遍历。因此,RingBuffer中至少有一个指针,来表示RingBuffer中的操作位置。另外,指针的自增操作需要做并发控制,Disruptor和本文的OptimizedQueue都使用CAS的乐观并发控制来保证指针自增的原子性。

Disruptor中的RingBuffer上只有一个指针,表示当前RingBuffer上消息写到了哪里,此外,每个消费者会维护一个sequence表示自己在RingBuffer上读到哪里,从这个角度讲,Disruptor中的RingBuffer上实际有消费者数+1个指针。由于我们要实现的是一个单消息单消费的阻塞队列,只要维护一个读指针(对应消费者)和一个写指针(对应生产者)即可,无论哪个指针,每次读写操作后都自增一次,一旦越界,即从数组头开始继续读写

五、Disruptor的核心概念

RingBuffer

如其名,环形的缓冲区。曾经 RingBuffer 是 Disruptor 中的最主要的对象,但从3.0版本开始,其职责被简化为仅仅负责对通过 Disruptor 进行交换的数据(事件)进行存储和更新。在一些更高级的应用场景中,Ring Buffer 可以由用户的自定义实现来完全替代。

SequenceDisruptor

通过顺序递增的序号来编号管理通过其进行交换的数据(事件),对数据(事件)的处理过程总是沿着序号逐个递增处理。一个 Sequence 用于跟踪标识某个特定的事件处理者( RingBuffer/Consumer )的处理进度。虽然一个 AtomicLong 也可以用于标识进度,但定义 Sequence 来负责该问题还有另一个目的,那就是防止不同的 Sequence 之间的CPU缓存伪共享(Flase Sharing)问题。

Sequencer

Sequencer 是 Disruptor 的真正核心。此接口有两个实现类 SingleProducerSequencer、MultiProducerSequencer ,它们定义在生产者和消费者之间快速、正确地传递数据的并发算法。

Sequence Barrier

用于保持对RingBuffer的 main published Sequence 和Consumer依赖的其它Consumer的 Sequence 的引用。 Sequence Barrier 还定义了决定 Consumer 是否还有可处理的事件的逻辑。

Wait Strategy

定义 Consumer 如何进行等待下一个事件的策略。 (注:Disruptor 定义了多种不同的策略,针对不同的场景,提供了不一样的性能表现)

Event

在 Disruptor 的语义中,生产者和消费者之间进行交换的数据被称为事件(Event)。它不是一个被 Disruptor 定义的特定类型,而是由 Disruptor 的使用者定义并指定。

EventProcessor

EventProcessor 持有特定消费者(Consumer)的 Sequence,并提供用于调用事件处理实现的事件循环(Event Loop)。

EventHandler

Disruptor 定义的事件处理接口,由用户实现,用于处理事件,是 Consumer 的真正实现。

Producer

即生产者,只是泛指调用 Disruptor 发布事件的用户代码,Disruptor 没有定义特定接口或类型。

各概念的作用

  • RingBuffer——Disruptor底层数据结构实现,核心类,是线程间交换数据的中转地;
  • Sequencer——序号管理器,负责消费者/生产者各自序号、序号栅栏的管理和协调;
  • Sequence——序号,声明一个序号,用于跟踪ringbuffer中任务的变化和消费者的消费情况;
  • SequenceBarrier——序号栅栏,管理和协调生产者的游标序号和各个消费者的序号,确保生产者不会覆盖消费者未来得及处理的消息,确保存在依赖的消费者之间能够按照正确的顺序处理;
  • EventProcessor——事件处理器,监听RingBuffer的事件,并消费可用事件,从RingBuffer读取的事件会交由实际的生产者实现类来消费;它会一直侦听下一个可用的序号,直到该序号对应的事件已经准备好。
  • EventHandler——业务处理器,是实际消费者的接口,完成具体的业务逻辑实现,第三方实现该接口;代表着消费者。
  • Producer——生产者接口,第三方线程充当该角色,producer向RingBuffer写入事件。

个人博客 蜗牛

并发编程之Disruptor并发框架的更多相关文章

  1. 并发编程之 Fork-Join 分而治之框架

    前言 "分而治之" 一直是一个有效的处理大量数据的方法.著名的 MapReduce 也是采取了分而治之的思想.简单来说,就是如果你要处理1000个数据,但是你并不具备处理1000个 ...

  2. python并发编程之gevent协程(四)

    协程的含义就不再提,在py2和py3的早期版本中,python协程的主流实现方法是使用gevent模块.由于协程对于操作系统是无感知的,所以其切换需要程序员自己去完成. 系列文章 python并发编程 ...

  3. 并发编程之J.U.C的第一篇

    并发编程之J.U.C AQS 原理 ReentrantLock 原理 1. 非公平锁实现原理 2)可重入原理 3. 可打断原理 5) 条件变量实现原理 3. 读写锁 3.1 ReentrantRead ...

  4. 并发编程之:ThreadLocal

    大家好,我是小黑,一个在互联网苟且偷生的农民工. 从前上一期[并发编程之:synchronized] 我们学到要保证在并发情况下对于共享资源的安全访问,就需要用到锁. 但是,加锁通常情况下会让运行效率 ...

  5. [转载]并发编程之Operation Queue和GCD

    并发编程之Operation Queue http://www.cocoachina.com/applenews/devnews/2013/1210/7506.html 随着移动设备的更新换代,移动设 ...

  6. Java并发编程之CAS

    CAS(Compare and swap)比较和替换是设计并发算法时用到的一种技术.简单来说,比较和替换是使用一个期望值和一个变量的当前值进行比较,如果当前变量的值与我们期望的值相等,就使用一个新值替 ...

  7. 并发编程之wait()、notify()

    前面的并发编程之volatile中我们用程序模拟了一个场景:在main方法中开启两个线程,其中一个线程t1往list里循环添加元素,另一个线程t2监听list中的size,当size等于5时,t2线程 ...

  8. 并发编程之 Exchanger 源码分析

    前言 JUC 包中除了 CountDownLatch, CyclicBarrier, Semaphore, 还有一个重要的工具,只不过相对而言使用的不多,什么呢? Exchange -- 交换器.用于 ...

  9. 并发编程之 Condition 源码分析

    前言 Condition 是 Lock 的伴侣,至于如何使用,我们之前也写了一些文章来说,例如 使用 ReentrantLock 和 Condition 实现一个阻塞队列,并发编程之 Java 三把锁 ...

随机推荐

  1. K8S组件

    Master 组件 Master组件提供集群的管理控制中心.Master组件可以在集群中任何节点上运行.但是为了简单起见,通常在一台VM/机器上启动所有Master组件,并且不会在此VM/机器上运行用 ...

  2. 利用art.template模仿VUE

    首先先看一下Typescript代码: import template = require('art-template/lib/template-web'); interface TemplateBi ...

  3. Python实例100个(基于最新Python3.7版本)

    Python3 100例 原题地址:   http://www.runoob.com/python/python-100-examples.html    git地址:    https://gith ...

  4. sass、less和stylus 相同与不同

    sass.less和stylus的安装使用和入门实践 https://www.jianshu.com/p/1eaf366814e2 stylus 基础教程 https://blog.csdn.net/ ...

  5. Spring cloud微服务安全实战-7-10ELK日志采集架构优化

    ELK搭建起来.采集日志,展示.但是这个架构还有一些问题. 可用性的问题,springboot的应用,随着业务的增长会越来越多.logstash压力就会越来越大.大到一定的程度可能就会吧logstas ...

  6. 嵌入式LINUX基础教程 第2版

    嵌入式LINUX基础教程  第2版 目录 第1章 入门 11.1 为什么选择Linux 11.2 嵌入式Linux现状 21.3 开源和GPL 21.4 标准及相关组织 31.4.1 Linux标准基 ...

  7. django安装使用xadmin

    Xadmin介绍 直接替换掉Django自带的admin系统,并提供了很多有用的东西:完全的可扩展的插件支持,基于Twitter Bootstrap的漂亮UI. 完全替代Django admin 支持 ...

  8. [图片问答]LODOP字体设置方法

    字体设置方法:一.整体设置(针对文本项),打印初始化后.增加打印项之前调用本函数LODOP.SET_PRINT_STYLE("FontSize",11);二.单个打印项(针对文本项 ...

  9. C#反射技术的简单操作(读取和设置类的属性、属性值)

    public class A { public int Property1 { get; set; } } static void Main(){ A aa = new A(); Type type ...

  10. 阿里云移动推送 ios项目添加SDK步骤

    添加阿里云Pods仓库和各产品SDK Pod依赖,配置步骤如下: 1. CocoaPods集成添加阿里云Pods仓库,Podfile添加: source 'https://github.com/ali ...