题目传送门

  传送门

  这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说。

  如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次。

  否则考虑每次操作前的数对应该是 $(y, y + kx)$。这样仍然不好处理。考虑忽略掉达到的 $a < b$ 的状态,那么每次的 $k \geqslant 1$。那么当较大数加上较小数的时候对应将 $k$ 加上 1,对应交换两边的数,然后将 $k$ 加上1。特别地,第一次操作不能做大加上小,因为第一次操作的时候没有 $k$。

  显然每次操作中,数对可以表示为 $(ax + by, cx + dy)$。那么一次加操作会得到 $(a + c) x , (c + d) y$,你发现这个东西和 SBT 的构造有点像。考虑把这个操作对应到 SBT 上。在两个相邻分数 $a, b$ 中插入一个分数 $c$ 可以得到新的两对 $a, c$ 和 $(c, b)$,分别可以看右加上左边以及左边加上右边。

  暂时不考虑 $m$ 的限制,我们来简单说明一下满足除了初始的数对一个数对可以对应 SBT 上某一层的一对相邻分数。考虑给出和上转化后的相同的生成方式。

  考虑第 $k$ 层中一对存在对应关系的相邻分数 $(p, q)$。

  如果 $p < q$,那么在树上的情况上是

  假设在 $p, q$ 间插入的分数为 $t$,根据 SBT 的构造方式可知 $q, t$ 是第 $(k + 1)$ 层的相邻分数 $t, p$ 是第 $(k + 1)$ 层的相邻分数。它们分别对应右加上左以及左加上右。当 $q < p$ 的时候是类似的。

  对于一个真分数 $\frac{a}{b}$,$xa + yb$ 的值总是比相应的它生成的两个分数的 $x'a + y'b$ 小 。一对相邻分数一定满足一个是另一个的祖先,这个不难使用归纳法证明。

  现在考虑加入 $m$ 的限制,那么真分数 $\frac{x}{y}$ 满足条件当且仅当 $x \leqslant y$ 以及 $xa + yb \leqslant m$,并且每一个满足条件的小于 $1$ 的真分数对应 $4$ 个满足条件的数对,特别地,1 如果合法只会对应 2 个满足条件的数对。

  前一个条件是因为第一次只能大加上小,第二个是因为题目限制。充分性由 SBT 构造过程和上面转化给出。

  那剩下的问题就非常傻逼了:

$$
\begin{align}
\sum_{i = 1}^{m} \sum_{j = 1}^{m} [i \leqslant j][(i, j) = 1][xi + yj \leqslant m]
\end{align}
$$

  基础莫比乌斯反演 & 类欧几里得即可计算。

Code

#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; #define ll long long ll ceil(ll a, ll b) {
return (a < 0) ? ((a - b + 1) / b) : (a / b);
} ll calc(ll a, ll b, ll c, ll n) {
if (!n) {
return 0;
}
if (!a) {
return ceil(b, c) * n;
}
if (b < 0 || b >= c || a < 0 || a >= c) {
ll ka = ceil(a, c), kb = ceil(b, c);
ll tmp = ka * ((n * (n - 1)) >> 1) + kb * n;
return calc(a - ka * c, b - kb * c, c, n) + tmp;
}
ll m = ((n - 1) * a + b) / c;
return n * m - calc(c, c - b + a - 1, a, m);
} const int C = 1e6 + 5;
const int D = 4e4 + 5; int pri[C];
int mu[C], smu[C]; void Euler(int n) {
static bitset<C> vis;
int num = 0;
mu[1] = 1;
for (int i = 2; i <= n; i++) {
if (!vis.test(i)) {
pri[num++] = i;
mu[i] = -1;
}
for (int *p = pri, *_ = pri + num, x; p != _ && (x = *p * i) <= n; p++) {
vis.set(x);
if (i % *p) {
mu[x] = -mu[i];
} else{
mu[x] = 0;
break;
}
}
}
for (int i = 1; i <= n; i++)
smu[i] = smu[i - 1] + mu[i];
} int T, N; int smu1[D];
boolean vis[D];
int S(int n) {
if (n <= 1000000)
return smu[n];
if (vis[N / n])
return smu1[N / n];
int &rt = smu1[N / n];
rt = 1;
vis[N / n] = true;
for (int i = 2, j; i <= n; i = j + 1) {
j = n / (n / i);
rt -= S(n / i) * (j - i + 1);
}
return rt;
} int main() {
scanf("%d%d", &T, &N);
Euler(1000000);
int x, y;
while (T--) {
scanf("%d%d", &x, &y);
if (x <= y) {
puts("1");
continue;
}
ll ans = 0;
for (int i = 1, j; i <= N / (x + y); i = j + 1) {
j = N / (N / i);
ans += (S(j) - S(i - 1)) * calc(-x - y, N / i - x - y, x, N / (i * (x + y)));
}
ans = ((ans << 1) + 1 + (x + y <= N)) << 1;
printf("%lld\n", ans);
}
return 0;
} 

算法马拉松35 E 数论只会Gcd - 类欧几里得 - Stern-Brocot Tree - 莫比乌斯反演的更多相关文章

  1. 数论只会GCD。。。

    一些关于GCD的代码.... #include <iostream> #include <cstdio> #include <cstring> using name ...

  2. LibreOJ β Round #2 E. 数论只会 GCD

    传送门 题解 题解里面说得很清楚了. 大约就是单独考虑每个数的贡献,然后看一下每个序列里有多少区间是没有这个数的,乘起来就好了. 为了处理修改我们需要每个值建一棵线段树来搞,但是窝zz了,写了线段树套 ...

  3. 51Nod1675 序列变换 数论 莫比乌斯反演

    原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...

  4. P2257 YY的GCD(莫比乌斯反演)

    第一次做莫比乌斯反演,推式子真是快乐的很啊(棒读) 前置 若函数\(F(n)\)和\(f(d)\)存在以下关系 \[ F(n)=\sum_{n|d}f(d) \] 则可以推出 \[ f(n)=\sum ...

  5. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  6. Gcd HYSBZ - 2818 (莫比乌斯反演)

    Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\ ...

  7. 51Nod 算法马拉松15 记一次悲壮而又开心的骗分比赛

    OwO 故事的起源大概是zcg前天发现51Nod晚上有场马拉松,然后他就很开心的过去打了 神奇的故事就开始了: 晚上的时候我当时貌似正在写线段树?然后看见zcg一脸激动告诉我第一题有九个点直接输出B就 ...

  8. 51Nod 算法马拉松21(迎新年)

    这次打算法马拉松是在星期五的晚上,发挥还算正常(废话,剩下的题都不会= =). 讲讲比赛经过吧. 8:00准时发题,拿到之后第一时间开始读. A配对,看上去像是二分图最大权匹配,一看范围吓傻了,先跳过 ...

  9. 「算法笔记」快速数论变换(NTT)

    一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...

随机推荐

  1. 联合 CNCF 共同出品:Kubernetes and Cloud Native Meetup 成都站

    亮点解读 云原生前沿技术分享:阿里经济体“云原生化”宝贵经验与最佳实践成果 OpenKruise 价值几何? 防踩坑指南:国内知名容器平台架构师解读从 ECS 迁移到 K8S 走过哪些坑. ​云原生服 ...

  2. (译)Kubernetes中的多容器Pod和Pod内容器间通信

    原文:https://www.mirantis.com/blog/multi-container-pods-and-container-communication-in-kubernetes/Pave ...

  3. 使用python对美团的评论进行贝叶斯模型分类

    环境配置需要安装的包pip install pandas pip install jieba pip install sklearn 一.数据获取利用python抓取美团的数据集,获取非空的数据,抓取 ...

  4. C# vb .NET生成QR二维码

    二维码比条形码具有更多优势,有些场合使用二维码比较多,比如支付.通过将某些数据生成二维码,就可以实现一码走天下.那么如何在C#,.Net平台代码里生成二维码呢?答案是使用SharpBarcode! S ...

  5. BUUCTF 随便注

    知识点: ##堆叠注入 #预语句注入 https://www.cnblogs.com/0nth3way/articles/7128189.html#autoid-1-0-0 正则过滤了很多关键字导致无 ...

  6. linux 进程通信之 守护进程

    守护进程(Daemon) Daemon(精灵)进程,是linux中的后台服务进程,通常独立于控制终端并且周期性地执行某种任务或等待处理某些发生的时间.一般采用以d结尾的名字.从下面的进程信息可以看出, ...

  7. [TCP/IP] TCP的报文头

    1.源端口和目的端口:各占2个字节,分别写入源端口和目的端口: 2.序列号:占4个字节,TCP连接中传送的字节流中的每个字节都按顺序编号.例如,一段报文的序号字段值是 301 ,而携带的数据共有100 ...

  8. 数据库-mysql01 简单介绍以及安装部署

    本次mysql数据库安装采用二进制安装(免安装即绿色版),数据库版本是mysql5.7.26 首先下载mysql安装包,然后上传服务器里,最后解压. 卸载centos7自带的数据库软件包: [root ...

  9. nacos 实现同机器上启动三个服务

    1.我们要在单台服务器上启动多个nacos实例,保证三个不同的端口,我们可以通过修改启动脚本: 打开启动脚本找到:export FUNCTION_MODE="all"    这一行 ...

  10. seq命令的使用

    标题:seq命令的使用 作用:seq命令用于以指定增量从首数开始打印数字到尾数,即产生从某个数到另外一个数之间的所有整数,并且可以对整数的格式.宽度.分割符号进行控制 语法: [1] seq [选项] ...