算法马拉松35 E 数论只会Gcd - 类欧几里得 - Stern-Brocot Tree - 莫比乌斯反演
题目传送门
这个官方题解除了讲了个结论,感觉啥都没说,不知道是因为我太菜了,还是因为它真的啥都没说。
如果 $x \geqslant y$,显然 gcd(x, y) 只会被调用一次。
否则考虑每次操作前的数对应该是 $(y, y + kx)$。这样仍然不好处理。考虑忽略掉达到的 $a < b$ 的状态,那么每次的 $k \geqslant 1$。那么当较大数加上较小数的时候对应将 $k$ 加上 1,对应交换两边的数,然后将 $k$ 加上1。特别地,第一次操作不能做大加上小,因为第一次操作的时候没有 $k$。
显然每次操作中,数对可以表示为 $(ax + by, cx + dy)$。那么一次加操作会得到 $(a + c) x , (c + d) y$,你发现这个东西和 SBT 的构造有点像。考虑把这个操作对应到 SBT 上。在两个相邻分数 $a, b$ 中插入一个分数 $c$ 可以得到新的两对 $a, c$ 和 $(c, b)$,分别可以看右加上左边以及左边加上右边。
暂时不考虑 $m$ 的限制,我们来简单说明一下满足除了初始的数对一个数对可以对应 SBT 上某一层的一对相邻分数。考虑给出和上转化后的相同的生成方式。
考虑第 $k$ 层中一对存在对应关系的相邻分数 $(p, q)$。
如果 $p < q$,那么在树上的情况上是
假设在 $p, q$ 间插入的分数为 $t$,根据 SBT 的构造方式可知 $q, t$ 是第 $(k + 1)$ 层的相邻分数 $t, p$ 是第 $(k + 1)$ 层的相邻分数。它们分别对应右加上左以及左加上右。当 $q < p$ 的时候是类似的。
对于一个真分数 $\frac{a}{b}$,$xa + yb$ 的值总是比相应的它生成的两个分数的 $x'a + y'b$ 小 。一对相邻分数一定满足一个是另一个的祖先,这个不难使用归纳法证明。
现在考虑加入 $m$ 的限制,那么真分数 $\frac{x}{y}$ 满足条件当且仅当 $x \leqslant y$ 以及 $xa + yb \leqslant m$,并且每一个满足条件的小于 $1$ 的真分数对应 $4$ 个满足条件的数对,特别地,1 如果合法只会对应 2 个满足条件的数对。
前一个条件是因为第一次只能大加上小,第二个是因为题目限制。充分性由 SBT 构造过程和上面转化给出。
那剩下的问题就非常傻逼了:
$$
\begin{align}
\sum_{i = 1}^{m} \sum_{j = 1}^{m} [i \leqslant j][(i, j) = 1][xi + yj \leqslant m]
\end{align}
$$
基础莫比乌斯反演 & 类欧几里得即可计算。
Code
#include <bits/stdc++.h>
using namespace std;
typedef bool boolean; #define ll long long ll ceil(ll a, ll b) {
return (a < 0) ? ((a - b + 1) / b) : (a / b);
} ll calc(ll a, ll b, ll c, ll n) {
if (!n) {
return 0;
}
if (!a) {
return ceil(b, c) * n;
}
if (b < 0 || b >= c || a < 0 || a >= c) {
ll ka = ceil(a, c), kb = ceil(b, c);
ll tmp = ka * ((n * (n - 1)) >> 1) + kb * n;
return calc(a - ka * c, b - kb * c, c, n) + tmp;
}
ll m = ((n - 1) * a + b) / c;
return n * m - calc(c, c - b + a - 1, a, m);
} const int C = 1e6 + 5;
const int D = 4e4 + 5; int pri[C];
int mu[C], smu[C]; void Euler(int n) {
static bitset<C> vis;
int num = 0;
mu[1] = 1;
for (int i = 2; i <= n; i++) {
if (!vis.test(i)) {
pri[num++] = i;
mu[i] = -1;
}
for (int *p = pri, *_ = pri + num, x; p != _ && (x = *p * i) <= n; p++) {
vis.set(x);
if (i % *p) {
mu[x] = -mu[i];
} else{
mu[x] = 0;
break;
}
}
}
for (int i = 1; i <= n; i++)
smu[i] = smu[i - 1] + mu[i];
} int T, N; int smu1[D];
boolean vis[D];
int S(int n) {
if (n <= 1000000)
return smu[n];
if (vis[N / n])
return smu1[N / n];
int &rt = smu1[N / n];
rt = 1;
vis[N / n] = true;
for (int i = 2, j; i <= n; i = j + 1) {
j = n / (n / i);
rt -= S(n / i) * (j - i + 1);
}
return rt;
} int main() {
scanf("%d%d", &T, &N);
Euler(1000000);
int x, y;
while (T--) {
scanf("%d%d", &x, &y);
if (x <= y) {
puts("1");
continue;
}
ll ans = 0;
for (int i = 1, j; i <= N / (x + y); i = j + 1) {
j = N / (N / i);
ans += (S(j) - S(i - 1)) * calc(-x - y, N / i - x - y, x, N / (i * (x + y)));
}
ans = ((ans << 1) + 1 + (x + y <= N)) << 1;
printf("%lld\n", ans);
}
return 0;
}
算法马拉松35 E 数论只会Gcd - 类欧几里得 - Stern-Brocot Tree - 莫比乌斯反演的更多相关文章
- 数论只会GCD。。。
一些关于GCD的代码.... #include <iostream> #include <cstdio> #include <cstring> using name ...
- LibreOJ β Round #2 E. 数论只会 GCD
传送门 题解 题解里面说得很清楚了. 大约就是单独考虑每个数的贡献,然后看一下每个序列里有多少区间是没有这个数的,乘起来就好了. 为了处理修改我们需要每个值建一棵线段树来搞,但是窝zz了,写了线段树套 ...
- 51Nod1675 序列变换 数论 莫比乌斯反演
原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)= ...
- P2257 YY的GCD(莫比乌斯反演)
第一次做莫比乌斯反演,推式子真是快乐的很啊(棒读) 前置 若函数\(F(n)\)和\(f(d)\)存在以下关系 \[ F(n)=\sum_{n|d}f(d) \] 则可以推出 \[ f(n)=\sum ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- Gcd HYSBZ - 2818 (莫比乌斯反演)
Gcd \[ Time Limit: 10000 ms\quad Memory Limit: 262144 kB \] 题意 求 \(gcd\left(x,y\right) = p\) 的对数,其中\ ...
- 51Nod 算法马拉松15 记一次悲壮而又开心的骗分比赛
OwO 故事的起源大概是zcg前天发现51Nod晚上有场马拉松,然后他就很开心的过去打了 神奇的故事就开始了: 晚上的时候我当时貌似正在写线段树?然后看见zcg一脸激动告诉我第一题有九个点直接输出B就 ...
- 51Nod 算法马拉松21(迎新年)
这次打算法马拉松是在星期五的晚上,发挥还算正常(废话,剩下的题都不会= =). 讲讲比赛经过吧. 8:00准时发题,拿到之后第一时间开始读. A配对,看上去像是二分图最大权匹配,一看范围吓傻了,先跳过 ...
- 「算法笔记」快速数论变换(NTT)
一.简介 前置知识:多项式乘法与 FFT. FFT 涉及大量 double 类型数据操作和 \(\sin,\cos\) 运算,会产生误差.快速数论变换(Number Theoretic Transfo ...
随机推荐
- linux软链接
这是linux中一个非常重要的命令,他的功能是为某一个文件在另一个位置建立一个同步的链接,这个命令最常用的参数是-s, 具体用法是: ln -s 源文件 目标文件 当我们需要在不同的目录,用到相同的文 ...
- Java JDK和IntelliJ IDEA 配置及安装
序言 初学java,idea走一波先.安装完成,配置配置项. idea 软件 官方下载地址:https://www.jetbrains.com/idea/download/#section=windo ...
- OfType<string>()
object[] vals = { 1, "Hello", true, "World", 9.1 }; IEnumerable<double> ju ...
- c# 模拟表单提交,post form 上传文件、数据内容
转自:https://www.cnblogs.com/DoNetCShap/p/10696277.html 表单提交协议规定:要先将 HTTP 要求的 Content-Type 设为 multipar ...
- C typedef、#define
参考链接:https://www.runoob.com/cprogramming/c-typedef.html 作用 typedef是用来为数据类型(可以是各种数据类型,包括自己定义的数据类型如结构体 ...
- SQLServer 高效 分页存储过程
/********************************************************************** 参数:@PrimaryKey 主键,@OrderBy 排 ...
- sql基础语句50条
curdate() 获取当前日期 年月日 curtime() 获取当前时间 时分秒 sysdate() 获取当前日期+时间 年月日 时分秒 */ order by bonus desc limit ( ...
- wpf 打开win8系统软件盘
三个函数 一) /// <summary> /// 判断进程是否正在运行 /// </summary> /// <param name="process&quo ...
- tcp_tw_recycle参数引发的数据库连接异常
[问题描述] 开发反馈有个应用在后端数据库某次计划性重启后经常会出现数据库连接异常问题,通过监控系统的埋点数据,发现应用连接数据库异常有两类表现: 其一:连接超时 131148.00ms To ...
- odoo10学习笔记五:高级视图
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/11189279.html 树视图 tree视图表现出来是列表视图,列表中一行一纪录.可以根据每行纪录的某字段值 ...