怎么区分哪些措施对我们有用呢?----首先根据learning curve来判断你的问题是high bias or variance

当你的算法是high bias问题时,如果你get more training examples是没有用处的,这时我们就不要浪费时间在get5 more training examples上面了。

对如何选择neural network architecture(选择几层hidden layer以及神经网络的大小)的建议

我们可以选择相对于来说"small"的neural network.=>特点: few parameters, more prone to underfitting 优点: 计算方便

我们也可以选择相对于来说"large"的neural network.(more units in hidden layer或者more hidden layers)=> 特点: more parameters,more prone to overfitting 缺点: computationally expensive(通常来说不是大的问题)。这种大型网络最主要的问题是出现overfitting的现象。

如果我们经常使用神经网络的话,会发现越大型的网络性能越好,如果出现了overfitting的现象,可以使用正则化的方法来修正overfitting。一般来说,使用"large"神经网络并且使用正则化来修正overfitting比使用"small"神经网络效果更好,出现的问题是计算量会较大。

如何来选择使用多少层hidden layer呢?是使用1层还是2层还是3层? 默认的情况是使用1层hidden layer,但是如果你确实想要使用多层的话,我们可以将数据分为trainning/cross validation/test data set,然后使用交叉验证的方法比较1个/2个/3个 hidden layer在cross validation data set上的表现情况,即我们有三个神经网络模型,通过交叉验证来选择一个表现最好的。

Bias vs. Variance(4)---根据是high bias还是high variance问题来判断接下来做些什么的更多相关文章

  1. 什么是遗传方差(Genetic variance)、加性遗传方差(Additive genetic variance)、显性遗传方差(Dominance genetic variance)、上位遗传方差(Epistatic genetic variance)

    遗传方差:遗传方差又称表型方差(phenotypic variance),通常结合基因型方差(genotype variance)和环境方差(environmental variance).遗传方差主 ...

  2. 理解 Bias 与 Variance 之间的权衡

    有监督学习中,预测误差的来源主要有两部分,分别为 bias  与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助 ...

  3. [转]理解 Bias 与 Variance 之间的权衡----------bias variance tradeoff

    有监督学习中,预测误差的来源主要有两部分,分别为 bias 与 variance,模型的性能取决于 bias 与 variance 的 tradeoff ,理解 bias 与 variance 有助于 ...

  4. 对Inductive Bias(归纳偏置)的理解

    参考资料: https://en.wikipedia.org/wiki/Inductive_bias http://blog.sina.com.cn/s/blog_616684a90100emkd.h ...

  5. nau8822 codec driver 录音时mic bias 无法自动打开问题

    nau8822 codec driver 录音时mic bias 无法自动打开问题 问题描述: kernel版本:3.10 在nuc970上测试nau8822驱动时发现,虽然驱动中有如下定义: SND ...

  6. output value . Sigmoid neurons are similar to perceptrons, but modified so that small changes in their weights and bias cause only a small change in their output.

    http://neuralnetworksanddeeplearning.com/chap1.html . Sigmoid neurons are similar to perceptrons, bu ...

  7. Opencv— — Bias and Gain

    // define head function #ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include < ...

  8. PatentTips - Integrated circuit well bias circuitry

    1. Field of the Invention This invention relates in general to an integrated circuit and more specif ...

  9. Scala 深入浅出实战经典 第49课 Scala中Variance代码实战(协变)

    王家林亲授<DT大数据梦工厂>大数据实战视频 Scala 深入浅出实战经典(1-64讲)完整视频.PPT.代码下载:百度云盘:http://pan.baidu.com/s/1c0noOt6 ...

随机推荐

  1. Mongodb CPU占用率达90%的优化调整报告

    1问题描述 1.1现场的数据库部署情况 服务器基本情况如下: CPU 20逻辑核,40线程 内存 64 G 硬盘 D盘 :1T SSD E盘:3T SATA F盘:3T SATA 在这台机器上同时部署 ...

  2. LeetCode 556. 下一个更大元素 III(Next Greater Element III)

    556. 下一个更大元素 III 556. Next Greater Element III 题目描述 给定一个 32 位正整数 n,你需要找到最小的 32 位整数,其与 n 中存在的位数完全相同,并 ...

  3. CF1033C Permutation Game

    题目描述 输入输出样例 输入 #1 输出 #1 BAAAABAB 输入 #2 输出 #2 ABAAAABBBAABAAB 数据范围 1<=n<=1e5,1<=ai<=n 解题思 ...

  4. DjangoRestFramework学习一之restful规范、APIview、解析器组件、Postman等

    DjangoRestFramework学习一之restful规范.APIview.解析器组件.Postman等 本节目录 一 预备知识 二 restful规范 三 DRF的APIView和解析器组件 ...

  5. 19 IO流(十六)——Commons工具包,FileUtils(一)

    Commons包的API:自己查吧懒得传云 Commons包的导入方法 Commons是一个java的IO开源工具,导入方法: 从apache.org下载commons包 解压 copy其中的comm ...

  6. 4. Spark SQL数据源

    4.1 通用加载/保存方法 4.1.1手动指定选项 Spark SQL的DataFrame接口支持多种数据源的操作.一个DataFrame可以进行RDDs方式的操作,也可以被注册为临时表.把DataF ...

  7. 协议——SPI

    SPI(Serial Peripheral interface)是由摩托罗拉公司定义的一种串行外围设备接口,是一种高速.全双工.同步的通信总线,只需要四根信号线即可,节约引脚,同时有利于PCB的布局. ...

  8. Spring Cloud--Hystrix服务熔断(线程隔离/服务降级)代码实现

    一旦服务阻塞就进行服务降级或线程隔离.要不然就会导致大面积服务的瘫痪,Hystrix就是干这个的,一出现不健康的服务就进行熔断,不阻塞后面线程的执行. 引入依赖: 加注解: 这三个注解可以用一个注解搞 ...

  9. 3D星形贴图

    3D星形贴图: /** * * *---------------------* * | *** 3D星形贴图 *** | * *---------------------* * * 编辑修改收录:fe ...

  10. ArcGIS JS 使用Proxy之 Printing Tools unable to connect to mapServer

    ArcGIS JS使用Proxy.ashx将地图服务隐藏,并在微博服务器端增加了地图服务权限判断. Proxy.ashx做了如下设置, <serverUrl url="http://l ...