官方提供的几种Kubernetes部署方式

  • minikube

Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,尝试Kubernetes或日常开发的用户使用。不能用于生产环境。

官方地址:https://kubernetes.io/docs/setup/minikube/

  • kubeadm

Kubeadm也是一个工具,提供kubeadm init和kubeadm join,用于快速部署Kubernetes集群。

官方地址:https://kubernetes.io/docs/reference/setup-tools/kubeadm/kubeadm/

  • 二进制包

从官方下载发行版的二进制包,手动部署每个组件,组成Kubernetes集群。

小结:

生产环境中部署Kubernetes集群,只有Kubeadm和二进制包可选,Kubeadm降低部署门槛,但屏蔽了很多细节,遇到问题很难排查。我们这里使用二进制包部署Kubernetes集群,我也是推荐大家使用这种方式,虽然手动部署麻烦点,但学习很多工作原理,更有利于后期维护。

环境介绍

软件环境

软件 版本

操作系统 CentOS 7.6_x64

Docker 18-ce

Kubernetes 1.12

服务器角色

角色 IP 组件

master 192.168.75.64 kube-apiserver,kube-controller-manager,kube-scheduler,etcd

node1 192.168.75.65 kubelet,kube-proxy,docker,flannel,etcd

node2 192.168.75.66 kubelet,kube-proxy,docker,flannel,etcd

初始化:

关闭selinux

关闭防火墙

组件 使用的证书

etcd ca.pem,server.pem,server-key.pem

flannel ca.pem,server.pem,server-key.pem

kube-apiserver ca.pem,server.pem,server-key.pem

kubelet ca.pem,ca-key.pem

kube-proxy ca.pem,kube-proxy.pem,kube-proxy-key.pem

kubectl ca.pem,admin.pem,admin-key.pem

注意事项:

三台主机的时间要尽可能的同步,保持一致,否则日志中会出现如下提示:

Nov  1 09:13:42 bogon etcd: the clock difference against peer e4ba0635cb718aa3 is too high [1.321146676s > 1s]
Nov 1 09:13:42 bogon etcd: the clock difference against peer e4ba0635cb718aa3 is too high [1.316524004s > 1s]
Nov 1 09:13:57 bogon etcd: the clock difference against peer a3174a13e9f88ee8 is too high [1.139050363s > 1s]
Nov 1 09:13:57 bogon etcd: the clock difference against peer a3174a13e9f88ee8 is too high [1.143273312s > 1s]

三台主机使用公共的同步时间服务器,或者指定其中一台服务器作为同步时间服务器,另外两台从这台进行时间同步

time.windows.com

再注意:

flannel v0.11 不支持etcd v3用法

部署Etcd集群

三台主机都需要部署etcd

1. 使用cfssl来生成自签证书,先下载cfssl工具:

使用shell脚本:cfssl.sh

或者手动执行如下命令

wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64
mv cfssl_linux-amd64 /usr/local/bin/cfssl
mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo

这三个命令保存压缩包:cfssl证书生成命令.7z

2. 生成证书

使用shell脚本:etcd-cert.sh

或者手动执行如下命令

创建以下三个文件:

# cat ca-config.json
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"www": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
} # cat ca-csr.json
{
"CN": "etcd CA",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing"
}
]
} # cat server-csr.json
# 注意: hosts主机参数要根据实际情况进行修改
{
"CN": "etcd",
"hosts": [
"192.168.75.64",
"192.168.75.65",
"192.168.75.66"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing"
}
]
}
# 生成证书
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=www server-csr.json | cfssljson -bare server # 查看证书
# ls *pem
ca-key.pem ca.pem server-key.pem server.pem

证书这块知道怎么生成、怎么用即可,建议暂时不必过多研究

3. 部署Etcd

二进制包下载地址:https://github.com/coreos/etcd/releases

以下部署步骤在规划的三个etcd节点操作一样,唯一不同的是etcd配置文件中的服务器IP要写当前的,ETCD_NAME也要写当前的

# 解压二进制包
mkdir /opt/etcd/{bin,cfg,ssl} -p
tar zxvf etcd-v3.3.10-linux-amd64.tar.gz
cp etcd-v3.3.10-linux-amd64/{etcd,etcdctl} /opt/etcd/bin/
# 创建etcd配置文件

# cat /opt/etcd/cfg/etcd

#[Member]
ETCD_NAME="etcd01"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.75.64:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.75.64:2379" #[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.75.64:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.75.64:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.75.64:2380,etcd02=https://192.168.75.65:2380,etcd03=https://192.168.75.66:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new" #[Security]
ETCD_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_CLIENT_CERT_AUTH="true"
ETCD_PEER_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_PEER_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_PEER_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_PEER_CLIENT_CERT_AUTH="true"

etcd配置文件说明:

  • ETCD_NAME 节点名称
  • ETCD_DATA_DIR 数据目录
  • ETCD_LISTEN_PEER_URLS 集群通信监听地址
  • ETCD_LISTEN_CLIENT_URLS 客户端访问监听地址
  • ETCD_INITIAL_ADVERTISE_PEER_URLS 集群通告地址
  • ETCD_ADVERTISE_CLIENT_URLS 客户端通告地址
  • ETCD_INITIAL_CLUSTER 集群节点地址
  • ETCD_INITIAL_CLUSTER_TOKEN 集群Token
  • ETCD_INITIAL_CLUSTER_STATE 加入集群的当前状态,new是新集群,existing表示加入已有集群
# systemd管理etcd

# cat /usr/lib/systemd/system/etcd.service
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target [Service]
Type=notify
EnvironmentFile=/opt/etcd/cfg/etcd
ExecStart=/opt/etcd/bin/etcd
Restart=on-failure
LimitNOFILE=65536 [Install]
WantedBy=multi-user.target
# 把刚才生成的证书拷贝到配置文件中的位置
cp ca.pem server*pem /opt/etcd/ssl # 启动并设置开启启动:
systemctl start etcd
systemctl enable etcd
ssh-keygen -t rsa
ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.75.65
ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.75.66
# 传输给其他node节点

# 需要修改配置文件
scp -r /opt/etcd/ root@192.168.75.65:/opt/
scp -r /opt/etcd/ root@192.168.75.66:/opt/ scp /usr/lib/systemd/system/etcd.service root@192.168.75.65:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.75.66:/usr/lib/systemd/system/ # 启动
systemctl daemon-reload
systemctl start etcd
systemctl enable etcd
# 三个配置文件示例

# 192.168.75.64
#[Member]
ETCD_NAME="etcd01"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.75.64:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.75.64:2379" #[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.75.64:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.75.64:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.75.64:2380,etcd02=https://192.168.75.65:2380,etcd03=https://192.168.75.66:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new" #[Security]
ETCD_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_CLIENT_CERT_AUTH="true"
ETCD_PEER_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_PEER_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_PEER_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_PEER_CLIENT_CERT_AUTH="true" # 192.168.75.65
#[Member]
ETCD_NAME="etcd02"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.75.65:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.75.65:2379" #[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.75.65:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.75.65:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.75.64:2380,etcd02=https://192.168.75.65:2380,etcd03=https://192.168.75.66:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new" #[Security]
ETCD_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_CLIENT_CERT_AUTH="true"
ETCD_PEER_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_PEER_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_PEER_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_PEER_CLIENT_CERT_AUTH="true" # 192.168.75.66
#[Member]
ETCD_NAME="etcd03"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.75.66:2380"
ETCD_LISTEN_CLIENT_URLS="https://192.168.75.66:2379" #[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.75.66:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.75.66:2379"
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.75.64:2380,etcd02=https://192.168.75.65:2380,etcd03=https://192.168.75.66:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new" #[Security]
ETCD_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_CLIENT_CERT_AUTH="true"
ETCD_PEER_CERT_FILE="/opt/etcd/ssl/server.pem"
ETCD_PEER_KEY_FILE="/opt/etcd/ssl/server-key.pem"
ETCD_PEER_TRUSTED_CA_FILE="/opt/etcd/ssl/ca.pem"
ETCD_PEER_CLIENT_CERT_AUTH="true"
# 都部署完成后,检查etcd集群状态

/opt/etcd/bin/etcdctl --ca-file=/opt/etcd/ssl/ca.pem --cert-file=/opt/etcd/ssl/server.pem --key-file=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.75.64:2379,https://192.168.75.65:2379,https://192.168.75.66:2379" cluster-health

member a3174a13e9f88ee8 is healthy: got healthy result from https://192.168.75.65:2379
member d6f32b054860cf2b is healthy: got healthy result from https://192.168.75.64:2379
member e4ba0635cb718aa3 is healthy: got healthy result from https://192.168.75.66:2379
cluster is healthy # 若是提示各种命令参数找不到,可以使用/opt/etcd/bin/etcdctl --help命令查看后面的参数
# 不同的etcd版本后面跟的参数有可能不一样

如果输出上面信息,就说明集群部署成功。如果有问题第一步先看日志:/var/log/message 或 journalctl -u etcd

在Node安装Docker

在node1和node2主机节点部署Docker

wget https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo -O /etc/yum.repos.d/docker-ce.repo
yum install -y yum-utils device-mapper-persistent-data lvm2
# K8S不支持最高版本的Docker,需要指定docker版本
yum -y install docker-ce-18.06.1.ce-3.el7 systemctl start docker && systemctl enable docker

这个操作步骤随便一个主机上操作就行,目的是往etcd集群中写入数据

(使用etcdctl v3.4.3命令会得到不同的返回结果)

# Falnnel要用etcd存储自身一个子网信息,所以要保证能成功连接Etcd,写入预定义子网段
/opt/etcd/bin/etcdctl --ca-file=/opt/etcd/ssl/ca.pem --cert-file=/opt/etcd/ssl/server.pem --key-file=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.75.64:2379,https://192.168.75.65:2379,https://192.168.75.66:2379" set /coreos.com/network/config '{ "Network": "172.17.0.0/16", "Backend": {"Type": "vxlan"}}' {"Network":"172.17.0.0/16","Backend":{"Type":"vxlan"}} # 查看
/opt/etcd/bin/etcdctl --ca-file=/opt/etcd/ssl/ca.pem --cert-file=/opt/etcd/ssl/server.pem --key-file=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.75.64:2379,https://192.168.75.65:2379,https://192.168.75.66:2379" get /coreos.com/network/config {"Network":"172.17.0.0/16","Backend":{"Type":"vxlan"}} # 删除
/opt/etcd/bin/etcdctl --ca-file=/opt/etcd/ssl/ca.pem --cert-file=/opt/etcd/ssl/server.pem --key-file=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.75.64:2379,https://192.168.75.65:2379,https://192.168.75.66:2379" del /coreos.com/network/config

以下部署步骤在规划的每个node节点都操作

wget https://github.com/coreos/flannel/releases/download/v0.11.0/flannel-v0.11.0-linux-amd64.tar.gz
tar zxvf flannel-v0.11.0-linux-amd64.tar.gz
mkdir -p /opt/flannel/{bin,cfg}
cp flanneld mk-docker-opts.sh /opt/flannel/bin

使用脚本:

或者执行如下命令操作:flannel.sh

脚本用法:bash flannel.sh https://192.168.75.64:2379,https://192.168.75.65:2379,https://192.168.75.66:2379

# 配置Flannel

# cat /opt/flannel/cfg/flanneld
FLANNEL_OPTIONS="--etcd-endpoints=https://192.168.75.64:2379,https://192.168.75.65:2379,https://192.168.75.66:2379 -etcd-cafile=/opt/etcd/ssl/ca.pem -etcd-certfile=/opt/etcd/ssl/server.pem -etcd-keyfile=/opt/etcd/ssl/server-key.pem" # 使用systemd管理Flannel # cat /usr/lib/systemd/system/flanneld.service
[Unit]
Description=Flanneld overlay address etcd agent
After=network-online.target network.target
Before=docker.service [Service]
Type=notify
EnvironmentFile=/opt/flannel/cfg/flanneld
ExecStart=/opt/flannel/bin/flanneld --ip-masq $FLANNEL_OPTIONS
ExecStartPost=/opt/flannel/bin/mk-docker-opts.sh -k DOCKER_NETWORK_OPTIONS -d /run/flannel/subnet.env
Restart=on-failure [Install]
WantedBy=multi-user.target
# 修改docker.service文件,结果如下:

# 配置Docker启动指定子网段

# cat /usr/lib/systemd/system/docker.service
[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network-online.target firewalld.service
Wants=network-online.target [Service]
Type=notify
EnvironmentFile=/run/flannel/subnet.env
ExecStart=/usr/bin/dockerd $DOCKER_NETWORK_OPTIONS
ExecReload=/bin/kill -s HUP $MAINPID
LimitNOFILE=infinity
LimitNPROC=infinity
LimitCORE=infinity
TimeoutStartSec=0
Delegate=yes
KillMode=process
Restart=on-failure
StartLimitBurst=3
StartLimitInterval=60s [Install]
WantedBy=multi-user.target
# 重启flannel和docker

systemctl daemon-reload
systemctl start flanneld
systemctl enable flanneld systemctl restart docker
# 检查是否生效

# 确保docker0与flannel.1在同一网段

# ps -ef | grep docker
root 6879 1 0 14:14 ? 00:00:01 /usr/bin/dockerd --bip=172.17.69.1/24 --ip-masq=false --mtu=1450 # ip addr
3: docker0: <NO-CARRIER,BROADCAST,MULTICAST,UP> mtu 1500 qdisc noqueue state DOWN group default
link/ether 02:42:77:67:ce:78 brd ff:ff:ff:ff:ff:ff
inet 172.17.69.1/24 brd 172.17.69.255 scope global docker0
valid_lft forever preferred_lft forever
4: flannel.1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1450 qdisc noqueue state UNKNOWN group default
link/ether 52:96:0d:2d:ab:08 brd ff:ff:ff:ff:ff:ff
inet 172.17.69.0/32 scope global flannel.1
valid_lft forever preferred_lft forever
inet6 fe80::5096:dff:fe2d:ab08/64 scope link
valid_lft forever preferred_lft forever

测试不同节点互通:

  • 节点到容器
  • 容器到节点
  • 容器到容器
# node1节点ping本机docker ip
# ping -c 3 172.17.69.1
PING 172.17.69.1 (172.17.69.1) 56(84) bytes of data.
64 bytes from 172.17.69.1: icmp_seq=1 ttl=64 time=0.055 ms
64 bytes from 172.17.69.1: icmp_seq=2 ttl=64 time=0.030 ms
64 bytes from 172.17.69.1: icmp_seq=3 ttl=64 time=0.034 ms --- 172.17.69.1 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.030/0.039/0.055/0.013 ms # docker内容器ping node1本机ip
# 拉取一个最简单的镜像busybox
# docker run -it busybox
Unable to find image 'busybox:latest' locally
latest: Pulling from library/busybox
0f8c40e1270f: Pull complete
Digest: sha256:1303dbf110c57f3edf68d9f5a16c082ec06c4cf7604831669faf2c712260b5a0
Status: Downloaded newer image for busybox:latest
/ # ip addr # 查看172.17.69.2容器使用的ip
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1000
link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
inet 127.0.0.1/8 scope host lo
valid_lft forever preferred_lft forever
5: eth0@if6: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1450 qdisc noqueue
link/ether 02:42:ac:11:45:02 brd ff:ff:ff:ff:ff:ff
inet 172.17.69.2/24 brd 172.17.69.255 scope global eth0
valid_lft forever preferred_lft forever
/ # ping 192.168.75.65 -c 3 # ping 本机ip
PING 192.168.75.65 (192.168.75.65): 56 data bytes
64 bytes from 192.168.75.65: seq=0 ttl=64 time=0.168 ms
64 bytes from 192.168.75.65: seq=1 ttl=64 time=0.056 ms
64 bytes from 192.168.75.65: seq=2 ttl=64 time=0.063 ms --- 192.168.75.65 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.056/0.095/0.168 ms
/ # ping -c 3 192.168.75.66 # ping node2节点的ip
PING 192.168.75.66 (192.168.75.66): 56 data bytes
64 bytes from 192.168.75.66: seq=0 ttl=63 time=0.609 ms
64 bytes from 192.168.75.66: seq=1 ttl=63 time=0.434 ms
64 bytes from 192.168.75.66: seq=2 ttl=63 time=0.315 ms --- 192.168.75.66 ping statistics ---
3 packets transmitted, 3 packets received, 0% packet loss
round-trip min/avg/max = 0.315/0.452/0.609 ms
/ #

在Master节点部署组件

在部署Kubernetes之前一定要确保etcd、flannel、docker是正常工作的,否则先解决问题再继续.

使用脚本:k8s-cert.sh

或者使用如下命令操作生成证书

# 生成证书

# 创建CA证书
# cat ca-config.json
{
"signing": {
"default": {
"expiry": "87600h"
},
"profiles": {
"kubernetes": {
"expiry": "87600h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
} # cat ca-csr.json
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Beijing",
"ST": "Beijing",
"O": "k8s",
"OU": "System"
}
]
} cfssl gencert -initca ca-csr.json | cfssljson -bare ca - # 生成apiserver证书 # cat server-csr.json
{
"CN": "kubernetes",
"hosts": [
"10.0.0.1",
"127.0.0.1",
"192.168.75.64",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
} cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server # 生成kube-proxy证书 # cat kube-proxy-csr.json
{
"CN": "system:kube-proxy",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "BeiJing",
"ST": "BeiJing",
"O": "k8s",
"OU": "System"
}
]
} cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy # 最终生成以下证书文件 # ls *.pem
ca-key.pem ca.pem kube-proxy-key.pem kube-proxy.pem server-key.pem server.pem

部署apiserver组件


# 下载二进制包:https://github.com/kubernetes/kubernetes/releases
# 下载这个包(kubernetes-server-linux-amd64.tar.gz)就够了,包含了所需的所有组件。 mkdir /opt/kubernetes/{bin,cfg,ssl} -p
tar zxvf kubernetes-server-linux-amd64.tar.gz
cd kubernetes/server/bin
cp kube-apiserver kube-scheduler kube-controller-manager kubectl /opt/kubernetes/bin # 创建token文件 cat /opt/kubernetes/cfg/token.csv
674c457d4dcf2eefe4920d7dbb6b0ddc,kubelet-bootstrap,10001,"system:kubelet-bootstrap" # 第一列:随机字符串,自己可生成
# 第二列:用户名
# 第三列:UID
# 第四列:用户组 # 创建apiserver配置文件
# 配置好前面生成的证书,确保能连接etcd
cat /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.75.64:2379,https://192.168.75.65:2379,https://192.168.75.66:2379 \
--bind-address=192.168.75.64 \
--secure-port=6443 \
--advertise-address=192.168.75.64 \
--allow-privileged=true \
--service-cluster-ip-range=10.0.0.0/24 \
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,SecurityContextDeny,ServiceAccount,ResourceQuota,NodeRestriction \
--authorization-mode=RBAC,Node \
--enable-bootstrap-token-auth \
--token-auth-file=/opt/kubernetes/cfg/token.csv \
--service-node-port-range=30000-50000 \
--tls-cert-file=/opt/kubernetes/ssl/server.pem \
--tls-private-key-file=/opt/kubernetes/ssl/server-key.pem \
--client-ca-file=/opt/kubernetes/ssl/ca.pem \
--service-account-key-file=/opt/kubernetes/ssl/ca-key.pem \
--etcd-cafile=/opt/etcd/ssl/ca.pem \
--etcd-certfile=/opt/etcd/ssl/server.pem \
--etcd-keyfile=/opt/etcd/ssl/server-key.pem"

参数说明:

  • logtostderr 启用日志
  • -v 日志等级
  • etcd-servers etcd集群地址
  • bind-address 监听地址
  • secure-port https安全端口
  • advertise-address 集群通告地址
  • allow-privileged 启用授权
  • service-cluster-ip-range Service虚拟IP地址段
  • enable-admission-plugins 准入控制模块
  • authorization-mode 认证授权,启用RBAC授权和节点自管理
  • enable-bootstrap-token-auth 启用TLS bootstrap功能,后面会讲到
  • token-auth-file token文件
  • service-node-port-range Service Node类型默认分配端口范围
# systemd管理apiserver

# cat /usr/lib/systemd/system/kube-apiserver.service
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes [Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-apiserver
ExecStart=/opt/kubernetes/bin/kube-apiserver $KUBE_APISERVER_OPTS
Restart=on-failure [Install]
WantedBy=multi-user.target # 启动
systemctl daemon-reload
systemctl enable kube-apiserver
systemctl start kube-apiserver

部署scheduler组件

# 创建schduler配置文件

# cat /opt/kubernetes/cfg/kube-scheduler
KUBE_SCHEDULER_OPTS="--logtostderr=true \
--v=4 \
--master=127.0.0.1:8080 \
--leader-elect"

参数说明:

  • --master 连接本地apiserver
  • --leader-elect 当该组件启动多个时,自动选举(HA)
# systemd管理schduler组件
# cat /usr/lib/systemd/system/kube-scheduler.service
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes [Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-scheduler
ExecStart=/opt/kubernetes/bin/kube-scheduler $KUBE_SCHEDULER_OPTS
Restart=on-failure [Install]
WantedBy=multi-user.target # 启动
systemctl daemon-reload
systemctl enable kube-scheduler
systemctl start kube-scheduler

部署controller-manager组件

# 创建controller-manager配置文件

# cat /opt/kubernetes/cfg/kube-controller-manager
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=true \
--v=4 \
--master=127.0.0.1:8080 \
--leader-elect=true \
--address=127.0.0.1 \
--service-cluster-ip-range=10.0.0.0/24 \
--cluster-name=kubernetes \
--cluster-signing-cert-file=/opt/kubernetes/ssl/ca.pem \
--cluster-signing-key-file=/opt/kubernetes/ssl/ca-key.pem \
--root-ca-file=/opt/kubernetes/ssl/ca.pem \
--service-account-private-key-file=/opt/kubernetes/ssl/ca-key.pem" # systemd管理controller-manager组件 # cat /usr/lib/systemd/system/kube-controller-manager.service
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes [Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-controller-manager
ExecStart=/opt/kubernetes/bin/kube-controller-manager $KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure [Install]
WantedBy=multi-user.target # 启动
systemctl daemon-reload
systemctl enable kube-controller-manager
systemctl start kube-controller-manager

所有组件都已经启动成功,通过kubectl工具查看当前集群组件状态:

# /opt/kubernetes/bin/kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-2 Healthy {"health":"true"}
etcd-0 Healthy {"health":"true"}
etcd-1 Healthy {"health":"true"} # 如上输出说明组件都正常

或者分别执行master目录下的sh脚本文件,注意脚本执行时需要参数

在Node节点部署组件

Master apiserver启用TLS认证后,Node节点kubelet组件想要加入集群,必须使用CA签发的有效证书才能与apiserver通信,当Node节点很多时,签署证书是一件很繁琐的事情,因此有了TLS Bootstrapping机制,kubelet会以一个低权限用户自动向apiserver申请证书,kubelet的证书由apiserver动态签署。

# 将kubelet-bootstrap用户绑定到系统集群角色

/opt/kubernetes/bin/kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

# 执行结果
clusterrolebinding.rbac.authorization.k8s.io/kubelet-bootstrap created # 创建kubeconfig文件 # 在生成kubernetes证书的目录下执行以下命令生成kubeconfig文件
# 创建kubelet bootstrapping kubeconfig
cd /opt/k8s_2
# 执行如下两个命令
BOOTSTRAP_TOKEN=674c457d4dcf2eefe4920d7dbb6b0ddc
KUBE_APISERVER="https://192.168.75.64:6443" # 设置集群参数
/opt/kubernetes/bin/kubectl config set-cluster kubernetes --certificate-authority=./ca.pem --embed-certs=true --server=${KUBE_APISERVER} --kubeconfig=bootstrap.kubeconfig
# 执行结果
Cluster "kubernetes" set. # 设置客户端认证参数
/opt/kubernetes/bin/kubectl config set-credentials kubelet-bootstrap --token=${BOOTSTRAP_TOKEN} --kubeconfig=bootstrap.kubeconfig
# 执行结果
User "kubelet-bootstrap" set. # 设置上下文参数
/opt/kubernetes/bin/kubectl config set-context default --cluster=kubernetes --user=kubelet-bootstrap --kubeconfig=bootstrap.kubeconfig
# 执行结果
Context "default" created. # 设置默认上下文
/opt/kubernetes/bin/kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
# 执行结果
Switched to context "default".
# 创建kube-proxy kubeconfig文件
/opt/kubernetes/bin/kubectl config set-cluster kubernetes --certificate-authority=./ca.pem --embed-certs=true --server=${KUBE_APISERVER} --kubeconfig=kube-proxy.kubeconfig
# 执行结果
Cluster "kubernetes" set. /opt/kubernetes/bin/kubectl config set-credentials kube-proxy --client-certificate=./kube-proxy.pem --client-key=./kube-proxy-key.pem --embed-certs=true --kubeconfig=kube-proxy.kubeconfig
# 执行结果
User "kube-proxy" set. /opt/kubernetes/bin/kubectl config set-context default --cluster=kubernetes --user=kube-proxy --kubeconfig=kube-proxy.kubeconfig
# 执行结果
Context "default" created. /opt/kubernetes/bin/kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
# 执行结果
Switched to context "default". # ls
bootstrap.kubeconfig kube-proxy.kubeconfig
# 将这两个文件拷贝到Node节点/opt/kubernetes/cfg目录下

部署kubelet组件

将前面下载的二进制包中的kubelet和kube-proxy拷贝到/opt/kubernetes/bin目录下

cd /opt/k8s_2/kubernetes/server/bin/
cp kubelet kube-proxy /opt/kubernetes/bin/ # 创建kubelet配置文件
# cat /opt/kubernetes/cfg/kubelet
KUBELET_OPTS="--logtostderr=true \
--v=4 \
--hostname-override=192.168.75.65 \
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \
--config=/opt/kubernetes/cfg/kubelet.config \
--cert-dir=/opt/kubernetes/ssl \
--pod-infra-container-image=registry.cn-hangzhou.aliyuncs.com/google-containers/pause-amd64:3.0" # 其中/opt/kubernetes/cfg/kubelet.config配置文件如下:
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: 192.168.75.65
port: 10250
readOnlyPort: 10255
cgroupDriver: cgroupfs
clusterDNS: ["10.0.0.2"]
clusterDomain: cluster.local.
failSwapOn: false
authentication:
anonymous:
enabled: true # systemd管理kubelet组件
# cat /usr/lib/systemd/system/kubelet.service
[Unit]
Description=Kubernetes Kubelet
After=docker.service
Requires=docker.service [Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet
ExecStart=/opt/kubernetes/bin/kubelet $KUBELET_OPTS
Restart=on-failure
KillMode=process [Install]
WantedBy=multi-user.target # 启动
systemctl daemon-reload
systemctl enable kubelet
systemctl start kubelet

参数说明:

  • --hostname-override 在集群中显示的主机名
  • --kubeconfig 指定kubeconfig文件位置,会自动生成
  • --bootstrap-kubeconfig 指定刚才生成的bootstrap.kubeconfig文件
  • --cert-dir 颁发证书存放位置
  • --pod-infra-container-image 管理Pod网络的镜像

在Master审批Node加入集群

# 启动后还没加入到集群中,需要手动允许该节点才可以。在Master节点查看请求签名的Node:
[root@bogon cfg]# /opt/kubernetes/bin/kubectl get csr
NAME AGE REQUESTOR CONDITION
node-csr-5O5xP__kXZ1UaDABvbe9u90WrV1EMwEYRYYeFLtO-7w 48s kubelet-bootstrap Pending [root@bogon cfg]# /opt/kubernetes/bin/kubectl certificate approve node-csr-5O5xP__kXZ1UaDABvbe9u90WrV1EMwEYRYYeFLtO-7w
certificatesigningrequest.certificates.k8s.io/node-csr-5O5xP__kXZ1UaDABvbe9u90WrV1EMwEYRYYeFLtO-7w approved [root@bogon cfg]# /opt/kubernetes/bin/kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.75.65 Ready <none> 12s v1.12.1
[root@bogon cfg]#

部署kube-proxy组件

# 创建kube-proxy配置文件
# cat /opt/kubernetes/cfg/kube-proxy
KUBE_PROXY_OPTS="--logtostderr=true \
--v=4 \
--hostname-override=192.168.75.65 \
--cluster-cidr=10.0.0.0/24 \
--kubeconfig=/opt/kubernetes/cfg/kube-proxy.kubeconfig" # systemd管理kube-proxy组件
# cat /usr/lib/systemd/system/kube-proxy.service
[Unit]
Description=Kubernetes Proxy
After=network.target [Service]
EnvironmentFile=-/opt/kubernetes/cfg/kube-proxy
ExecStart=/opt/kubernetes/bin/kube-proxy $KUBE_PROXY_OPTS
Restart=on-failure [Install]
WantedBy=multi-user.target # 启动
systemctl daemon-reload
systemctl enable kube-proxy
systemctl start kube-proxy

Node2部署方式一样

需要注意的是配置文件中的IP地址需要换成当前使用的

查看集群状态

# 在master主机上查看
/opt/kubernetes/bin/kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.75.65 Ready <none> 14m v1.12.1
192.168.75.66 Ready <none> 2m54s v1.12.1 # 在node主机上查看会出现这样的结果:The connection to the server localhost:8080 was refused - did you specify the right host or port? /opt/kubernetes/bin/kubectl get cs
NAME STATUS MESSAGE ERROR
scheduler Healthy ok
etcd-1 Healthy {"health":"true"}
etcd-0 Healthy {"health":"true"}
controller-manager Healthy ok
etcd-2 Healthy {"health":"true"}

运行一个测试示例

# 创建一个Nginx Web,测试集群是否正常工作
/opt/kubernetes/bin/kubectl run nginx --image=nginx --replicas=3
# 执行结果
kubectl run --generator=deployment/apps.v1beta1 is DEPRECATED and will be removed in a future version. Use kubectl create instead.
deployment.apps/nginx created /opt/kubernetes/bin/kubectl expose deployment nginx --port=88 --target-port=80 --type=NodePort
# 执行结果
service/nginx exposed # 查看Pod,Service
/opt/kubernetes/bin/kubectl get pods
# 执行结果
NAME READY STATUS RESTARTS AGE
nginx-dbddb74b8-4bd8v 1/1 Running 0 90s
nginx-dbddb74b8-5kjns 1/1 Running 0 90s
nginx-dbddb74b8-tbzhl 1/1 Running 0 90s /opt/kubernetes/bin/kubectl get svc
# 执行结果
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 100m
nginx NodePort 10.0.0.116 <none> 88:37027/TCP 66s # 访问集群中部署的Nginx,打开浏览器输入:http://192.168.75.65:37027 或者http://192.168.75.66:37027

注意事项

flannel v0.11版本不支持etcd v3.4.3版本,支持etcd v3.3.10版本

因为etcd分v2和v3俩版本,不同版本使用的命令参数不同,得到的结果也不同

若flannel v0.11使用etcd v3.4.3版本,则(Falnnel要用etcd存储自身一个子网信息,所以要保证能成功连接Etcd,写入预定义子网段)使用的命令会有变化,然后结果是可以写进去的。但是在启动flannel的时候,会报错:Couldn't fetch network config: client: response is invalid json. The endpoint is probably not valid etcd cluster endpoint.

这就是使用flannel版本跟etcd版本不支持的结果

采用二进制方式安装K8S集群,版本etcd-v3.3.10,flannel-v0.11.0,kubernetes-server-linux-amd64的更多相关文章

  1. 二进制方法-部署k8s集群部署1.18版本

    二进制方法-部署k8s集群部署1.18版本 1. 前置知识点 1.1 生产环境可部署kubernetes集群的两种方式 目前生产部署Kubernetes集群主要有两种方式 kuberadm Kubea ...

  2. yum安装k8s集群

    k8s的安装有多种方式,如yum安装,kubeadm安装,二进制安装等.本文是入门系列,只是为了快速了解k8s的原理和工作过程,对k8s有一个快速的了解,这里直接采用yum安装 的1.5.2为案例进行 ...

  3. 二进制方式安装 k8s

    推荐个好用的安装k8s的工具 https://github.com/easzlab/kubeasz 该工具基于二进制方式部署 k8s, 利用 ansible-playbook 实现自动化    1.1 ...

  4. Blazor+Dapr+K8s微服务之基于WSL安装K8s集群并部署微服务

         前面文章已经演示过,将我们的示例微服务程序DaprTest1部署到k8s上并运行.当时用的k8s是Docker for desktop 自带的k8s,只要在Docker for deskto ...

  5. [k8s]kubespray(ansible)自动化安装k8s集群

    kubespray(ansible)自动化安装k8s集群 https://github.com/kubernetes-incubator/kubespray https://kubernetes.io ...

  6. 冰河教你一次性成功安装K8S集群(基于一主两从模式)

    写在前面 研究K8S有一段时间了,最开始学习K8S时,根据网上的教程安装K8S环境总是报错.所以,我就改变了学习策略,先不搞环境搭建了.先通过官网学习了K8S的整体架构,底层原理,又硬啃了一遍K8S源 ...

  7. 使用kubeadm安装k8s集群故障处理三则

    最近在作安装k8s集群,测试了几种方法,最终觉得用kubeadm应该最规范. 限于公司特别的网络情况,其安装比网上不能访问google的情况还要艰难. 慢慢积累经验吧. 今天遇到的三则故障记下来作参考 ...

  8. kubernetes教程第一章-kubeadm高可用安装k8s集群

    目录 Kubeadm高可用安装k8s集群 kubeadm高可用安装1.18基本说明 k8s高可用架构解析 kubeadm基本环境配置 kubeadm基本组件安装 kubeadm集群初始化 高可用Mas ...

  9. 万级K8s集群背后etcd稳定性及性能优化实践

    背景与挑战 随着腾讯自研上云及公有云用户的迅速增长,一方面,腾讯云容器服务TKE服务数量和核数大幅增长, 另一方面我们提供的容器服务类型(TKE托管及独立集群.EKS弹性集群.edge边缘计算集群.m ...

随机推荐

  1. SonarQube入门【转】

    一.SonarQube简介Sonar 是一个用于代码质量管理的开放平台.通过插件机制,Sonar可以集成不同的测试工具,代码分析工具, 以及持续集成工具. 比如pmd-cpd.checkstyle.f ...

  2. KS(Kolmogorov-Smirnov)值

    KS(Kolmogorov-Smirnov)值越大,表示模型能够将正.负客户区分开的程度越大.KS值的取值范围是[0,1] ks越大,表示计算预测值的模型区分好坏用户的能力越强. ks值 含义 > ...

  3. Shell脚本自动重启Java服务

    话不多说直接上代码: cd /home/javaProduct/if [ -d '/home/javaProduct/lib_new/' ]; thenecho 'Has New Lib!'echo ...

  4. shell编程系列3--命令替换

    shell编程系列3--命令替换 命令替换 命令替换总结 方法1 `command` 方法2 $(command) 例子1: 获取系统的所有用户并输出 for循环能以空格.换行.tab键作为分隔符 [ ...

  5. 在gitlab新建分支,IDEA切换时找不到的解决办法

    VCS——>Git——>Fetch

  6. 【Leetcode_easy】1030. Matrix Cells in Distance Order

    problem 1030. Matrix Cells in Distance Order 参考 1. Leetcode_easy_1030. Matrix Cells in Distance Orde ...

  7. c# stmp邮件发送

    最近用到了邮件发送功能,因为stmp设置.参数传递错误等一些问题走了弯路,虽然代码很简单,这里还是记录一下,方便下次查阅. 用个人163邮箱测试的邮件发送 class Program { static ...

  8. python的网络工具scapy

    文档 https://scapy.readthedocs.io/en/latest/api/scapy.sendrecv.html 阅读文档 https://blog.csdn.net/Al_xin/ ...

  9. bootstrap-table中使用bootstrap-switch开关按钮

    先上图 准备工作: 添加css和js文件 #bootstrap开关按钮#} <link href="https://cdn.bootcss.com/bootstrap-switch/3 ...

  10. SPSS 2019年10月17日 21:46:38 今日学习总结

    数据库: 开放数据库链接是为了解决异构数据库间的数据共享而产生的,现已成为WOSA的主要部分和基于Windows环境的一种数据库访问接口标准ODBC为异构数据库访问提供一个接口,允许应用程序以SQL为 ...