Design a Tic-tac-toe game that is played between two players on a n x n grid.

You may assume the following rules:

A move is guaranteed to be valid and is placed on an empty block.
Once a winning condition is reached, no more moves is allowed.
A player who succeeds in placing n of their marks in a horizontal, vertical, or diagonal row wins the game.
Example:
Given n = 3, assume that player 1 is "X" and player 2 is "O" in the board.

TicTacToe toe = new TicTacToe(3);

toe.move(0, 0, 1); -> Returns 0 (no one wins)
|X| | |
| | | | // Player 1 makes a move at (0, 0).
| | | |

toe.move(0, 2, 2); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 2 makes a move at (0, 2).
| | | |

toe.move(2, 2, 1); -> Returns 0 (no one wins)
|X| |O|
| | | | // Player 1 makes a move at (2, 2).
| | |X|

toe.move(1, 1, 2); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 2 makes a move at (1, 1).
| | |X|

toe.move(2, 0, 1); -> Returns 0 (no one wins)
|X| |O|
| |O| | // Player 1 makes a move at (2, 0).
|X| |X|

toe.move(1, 0, 2); -> Returns 0 (no one wins)
|X| |O|
|O|O| | // Player 2 makes a move at (1, 0).
|X| |X|

toe.move(2, 1, 1); -> Returns 1 (player 1 wins)
|X| |O|
|O|O| | // Player 1 makes a move at (2, 1).
|X|X|X|
Follow up:
Could you do better than O(n^2) per move() operation?

Hint:

Could you trade extra space such that move() operation can be done in O(1)?
You need two arrays: int rows[n], int cols[n], plus two variables: diagonal, anti_diagonal.

解法1: 暴力解法,每走一步,对所走点的水平,竖直,对角线,反对角线进行检查是否满足条件。

解法2: 根据提示,分别建立水平,竖直两个数组,以及对角线,反对角线两个变量。每走一步分别对这几个进行判断,一个玩家加1,一个玩家-1,如果下棋子的点的水平或者垂直数组里的元素的值等于n, 或者对角线的值的绝对值等于n,那么就返回此时下棋子的选手赢。

Java:

public class TicTacToe {

    int[][] matrix;

    /** Initialize your data structure here. */
public TicTacToe(int n) {
matrix = new int[n][n];
} /** Player {player} makes a move at ({row}, {col}).
@param row The row of the board.
@param col The column of the board.
@param player The player, can be either 1 or 2.
@return The current winning condition, can be either:
0: No one wins.
1: Player 1 wins.
2: Player 2 wins. */
public int move(int row, int col, int player) {
matrix[row][col]=player; //check row
boolean win=true;
for(int i=0; i<matrix.length; i++){
if(matrix[row][i]!=player){
win=false;
break;
}
} if(win) return player; //check column
win=true;
for(int i=0; i<matrix.length; i++){
if(matrix[i][col]!=player){
win=false;
break;
}
} if(win) return player; //check back diagonal
win=true;
for(int i=0; i<matrix.length; i++){
if(matrix[i][i]!=player){
win=false;
break;
}
} if(win) return player; //check forward diagonal
win=true;
for(int i=0; i<matrix.length; i++){
if(matrix[i][matrix.length-i-1]!=player){
win=false;
break;
}
} if(win) return player; return 0;
}
}

Java:

public class TicTacToe {
int[] rows;
int[] cols;
int dc1;
int dc2;
int n;
/** Initialize your data structure here. */
public TicTacToe(int n) {
this.n=n;
this.rows=new int[n];
this.cols=new int[n];
} /** Player {player} makes a move at ({row}, {col}).
@param row The row of the board.
@param col The column of the board.
@param player The player, can be either 1 or 2.
@return The current winning condition, can be either:
0: No one wins.
1: Player 1 wins.
2: Player 2 wins. */
public int move(int row, int col, int player) {
int val = (player==1?1:-1); rows[row]+=val;
cols[col]+=val; if(row==col){
dc1+=val;
}
if(col==n-row-1){
dc2+=val;
} if(Math.abs(rows[row])==n
|| Math.abs(cols[col])==n
|| Math.abs(dc1)==n
|| Math.abs(dc2)==n){
return player;
} return 0;
}
}  

Python:

class TicTacToe(object):

    def __init__(self, n):
"""
Initialize your data structure here.
:type n: int
"""
self.__size = n
self.__rows = [[0, 0] for _ in xrange(n)]
self.__cols = [[0, 0] for _ in xrange(n)]
self.__diagonal = [0, 0]
self.__anti_diagonal = [0, 0] def move(self, row, col, player):
"""
Player {player} makes a move at ({row}, {col}).
@param row The row of the board.
@param col The column of the board.
@param player The player, can be either 1 or 2.
@return The current winning condition, can be either:
0: No one wins.
1: Player 1 wins.
2: Player 2 wins.
:type row: int
:type col: int
:type player: int
:rtype: int
"""
i = player - 1
self.__rows[row][i] += 1
self.__cols[col][i] += 1
if row == col:
self.__diagonal[i] += 1
if col == len(self.__rows) - row - 1:
self.__anti_diagonal[i] += 1
if any(self.__rows[row][i] == self.__size,
self.__cols[col][i] == self.__size,
self.__diagonal[i] == self.__size,
self.__anti_diagonal[i] == self.__size):
return player return 0

C++:

class TicTacToe {
public:
/** Initialize your data structure here. */
TicTacToe(int n) {
board.resize(n, vector<int>(n, 0));
} int move(int row, int col, int player) {
board[row][col] = player;
int i = 0, j = 0, n = board.size();
for (j = 1; j < n; ++j) {
if (board[row][j] != board[row][j - 1]) break;
}
if (j == n) return player;
for (i = 1; i < n; ++i) {
if (board[i][col] != board[i - 1][col]) break;
}
if (i == n) return player;
if (row == col) {
for (i = 1; i < n; ++i) {
if (board[i][i] != board[i - 1][i - 1]) break;
}
if (i == n) return player;
}
if (row + col == n - 1) {
for (i = 1; i < n; ++i) {
if (board[n - i - 1][i] != board[n - i][i - 1]) break;
}
if (i == n) return player;
}
return 0;
} private:
vector<vector<int>> board;
};

C++:

class TicTacToe {
public:
/** Initialize your data structure here. */
TicTacToe(int n): rows(n), cols(n), N(n), diag(0), rev_diag(0) {} int move(int row, int col, int player) {
int add = player == 1 ? 1 : -1;
rows[row] += add;
cols[col] += add;
diag += (row == col ? add : 0);
rev_diag += (row == N - col - 1 ? add : 0);
return (abs(rows[row]) == N || abs(cols[col]) == N || abs(diag) == N || abs(rev_diag) == N) ? player : 0;
} private:
vector<int> rows, cols;
int diag, rev_diag, N;
};

  

  

类似题目:

[LeetCode] Valid Tic-Tac-Toe State 验证井字棋状态 

[LeetCode] 79. Word Search 单词搜索

 

All LeetCode Questions List 题目汇总

[LeetCode] 348. Design Tic-Tac-Toe 设计井字棋游戏的更多相关文章

  1. [LeetCode] Design Tic-Tac-Toe 设计井字棋游戏

    Design a Tic-tac-toe game that is played between two players on a n x n grid. You may assume the fol ...

  2. [Swift]LeetCode348. 设计井字棋游戏 $ Design Tic-Tac-Toe

    Design a Tic-tac-toe game that is played between two players on a n x n grid. You may assume the fol ...

  3. [CareerCup] 17.2 Tic Tac Toe 井字棋游戏

    17.2 Design an algorithm to figure out if someone has won a game oftic-tac-toe. 这道题让我们判断玩家是否能赢井字棋游戏, ...

  4. 井字棋游戏升级版 - TopTicTacToe项目 简介

    一.游戏简介 井字棋是一款世界闻名的游戏,不用我说,你一定知道它的游戏规则. 这款游戏简单易学,玩起来很有意思,不过已经证明出这款游戏如果两个玩家都足够聪明的话, 是很容易无法分出胜负的,即我们得到的 ...

  5. JavaFX 井字棋游戏

    利用JavaFX设计一个井字棋游戏,其中包括了能够与玩家对战的AI.AI的实现相比五子棋来说要简单得多,可以保证AI在后手情况下绝对不会输,具体实现如下: /* * To change this li ...

  6. C++井字棋游戏,DOS界面版

    据说有一个能保证不败的算法.明天看看先再写个PVC版的. 正题.今天无聊写了个井字棋游戏,顺便逐渐让自己习惯良好的代码风格,放上来给新手学习学习. jzq2.cpp /* N字棋游戏PVP版,DOS版 ...

  7. Java井字棋游戏

    试着写了一个井字棋游戏,希望各位能给予一些宝贵的建议. 一.棋盘类 package 井字棋游戏; public class ChessBoard { private int number; Perso ...

  8. [C++] 井字棋游戏源码

    TicTac.h #define EX 1 //该点左鼠标 #define OH 2 //该点右鼠标 class CMyApp : public CWinApp { public: virtual B ...

  9. Raptor井字棋游戏

    作为大学第一个小作品,记录一下,也给那些想接触到Raptor游戏的人一个小小的参考QAQ至于Raptor的语法和使用,可以参考一下他的帮助手册,看不懂英文的话可以复制放到翻译上看. 以上是主函数 以下 ...

随机推荐

  1. PAT甲级1012题解——选择一种合适数据存储方式能使题目变得更简单

    题目分析: 本题的算法并不复杂,主要是要搞清楚数据的存储方式(选择一种合适的方式存储每个学生的四个成绩很重要)这里由于N的范围为10^6,故选择结构体来存放对应下标为学生的id(N只有2000的范围, ...

  2. python学习类与方法的调用规则

    1类方法的特点是类方法不属于任何该类的对象,只属于类本身 2类的静态方法类似于全局函数,因为静态方法既没有实例方法的self参数也没有类方法的cls参数,谁都可以调用 3.实例方法只属于实例,是实例化 ...

  3. Laravel —— 多模块开发

    Laravel 框架比较庞大,更适用于比较大的项目. 为了整个项目文件结构清晰,不同部分分为不同模块很有必要. 一.安装扩展包 1.根据不同 Laravel 版本,选择扩展包版本. packagest ...

  4. Spring框架的JDBC模板技术和事物

    Spring框架的JDBC模板技术         技术分析之Spring框架的JDBC模板技术概述  1. Spring框架中提供了很多持久层的模板类来简化编程,使用模板类编写程序会变的简单     ...

  5. How to Close Frozen Applications in macOS

    How to Close Frozen Applications in macOS By Zeeshan Akram  - February 18, 2019 0 436     Oftenly, y ...

  6. zabbix显示 get value from agent failed:cannot connetct to xxxx:10050:[4] interrupted system call

    在阿里云上部署的两台云主机,从server上 agent.ping不通agent10050端口,在agent上使用firewalld-cmd 添加了10050端口还不行,关闭了防火墙和selinux也 ...

  7. siblings() 方法

    siblings([selected])       简介: 给定一个表示一组DOM元素的jQuery对象,该.siblings()方法允许我们在DOM树中搜索这些元素的兄弟节点,并从匹配的元素构造一 ...

  8. 安卓入门教程(十四)-菜单,ActionBar,对话框

    已经发表个人公众号 菜单类型 选项菜单(OptionMenu) 子菜单(SubMenu) 上下文菜单(ContextMenu) 方法: public boolean onCreateOptionsMe ...

  9. tensorflow学习(一)

    今天开始学习tensorflow框架,从极客学院下载了官方中文教程(15年翻译的),第一天开始学习第一章ng基本流程和原理,作为前奏.然后写了代码,验证一下,准确率确实非常高,非常好用.把代码上传,作 ...

  10. mysql rtrim() 函数

    mysql> select rtrim(" cdcdcd "); +--------------------+ | rtrim(" cdcdcd ") | ...