LG1155 「NOIP2008」双栈排序 二分图判定
问题描述
题解
\(i,j\)如果不能进入一个栈,要满足存在\(k\),使得\(i<j<k\)且\(a_k<a_i<a_j\)
如果\(i,j\)不能进入一个栈,在\(i,j\)之间连边。
判定这个图是不是二分图。
如果是二分图,则可以,否则不行。
这样时间复杂度是\(O(n^3)\),可以卡过去,但是也可以利用\(DP\)优化到\(O(n^2)\)
令\(f_i\)代表\([i,n]\)中的最小值,如果\(i,j\)满足\(a_i>f_{j+1}\)且\(a_i<a_j\),则在\(i,j\)之间建边
关于考场策略
这道题有无解的情况,在当下,很多题目输出无解直接没有分数了。
但是发现这题的难点在于判定无解,构造则较为容易。
考场中可以大胆直接构造,在本题中可以获得\(90\)分的高分。
\(\mathrm{Code}\)
#include<bits/stdc++.h>
using namespace std;
template <typename Tp>
void read(Tp &x){
x=0;char ch=1;int fh;
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-'){
fh=-1;ch=getchar();
}
else fh=1;
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
x*=fh;
}
const int maxn=1000+7;
const int maxm=1000000+7;
int n,a[maxn];
int Head[maxn],Next[maxm],to[maxm],tot;
int col[maxn];
void add(int x,int y){
to[++tot]=y,Next[tot]=Head[x],Head[x]=tot;
}
bool flag;
void color(int st){
col[st]=1;queue<int>q;
q.push(st);
while(!q.empty()){
int x=q.front();q.pop();
for(int i=Head[x];i;i=Next[i]){
int y=to[i];
if(!col[y]) col[y]=3-col[x],q.push(y);
else{
if(col[y]!=3-col[x]){
puts("0");exit(0);
}
}
}
}
}
int f[maxn];
stack <int> s1,s2;
int cnt=1;
int main(){
read(n);
for(int i=1;i<=n;i++) read(a[i]);
f[n+1]=0x3f3f3f3f;
for(int i=n;i>=1;i--) f[i]=min(f[i+1],a[i]);
for(int i=1;i<=n;i++){
for(int j=i+1;j<=n;j++){
if(a[i]>f[j+1]&&a[i]<a[j]) add(i,j),add(j,i);
}
}
for(int i=1;i<=n;i++){
if(!col[i]) color(i);
}
for(int i=1;i<=n;i++){
if(col[i]==1){
s1.push(a[i]);printf("a ");
}
else{
s2.push(a[i]);printf("c ");
}
while((s1.size()&&s1.top()==cnt)||(s2.size()&&s2.top()==cnt)){
if(s1.size()&&s1.top()==cnt){
printf("b ");s1.pop();
}
else{
printf("d ");s2.pop();
}
++cnt;
}
}
return 0;
}
LG1155 「NOIP2008」双栈排序 二分图判定的更多相关文章
- NOIP2008双栈排序[二分图染色|栈|DP]
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- [luogu1155 NOIP2008] 双栈排序 (二分图染色)
传送门 Description Input 第一行是一个整数 n . 第二行有 n 个用空格隔开的正整数,构成一个 1−n 的排列. Output 共一行,如果输入的排列不是"可双栈排序排列 ...
- #include <NOIP2008 Junior> 双栈排序 ——using namespace wxl;
题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈S1 ...
- 【NOIP2008】双栈排序
感觉看了题解还是挺简单的,不知道当年chty同学为什么被卡了呢么久--所以说我还是看题解了 原题: Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将 ...
- 【提高组NOIP2008】双栈排序 (twostack.pas/c/cpp)
[题目描述] Tom最近在研究一个有趣的排序问题.如图所示,通过2个栈S1和S2,Tom希望借助以下4种操作实现将输入序列升序排序. 操作a 如果输入序列不为空,将第一个元素压入栈S1 操作b 如果栈 ...
- [NOIp2008] 双栈排序 (二分图染色 + 贪心)
题意 给你一个长为 \(n\) 的序列 \(p\) ,问是否能够通过对于两个栈进行 push, pop(print) 操作使得最后输出序列单调递增(即为 \(1 \cdots n\) ),如果无解输出 ...
- 洛谷 P1155 【NOIP2008】双栈排序
题目链接 题解 这题有点神啊.. 我们仔细观察一下,发现两个栈内元素必须为降序 那么有结论 如果有\(i < j < k\) 且 \(a[k] < a[i] < a[j]\)则 ...
- LOJ P1155 双栈排序 二分图染色 图论
https://www.luogu.org/problem/show?pid=P1155 题解: https://www.byvoid.com/zhs/blog/noip2008-twostack 开 ...
- Luogu1155 NOIP2008 双栈排序 【二分图染色】【模拟】
Luogu1155 NOIP2008 双栈排序 题目描述 Tom最近在研究一个有趣的排序问题.如图所示,通过 2个栈 S1 和 S2 ,Tom希望借助以下 44 种操作实现将输入序列升序排序. 操作 ...
随机推荐
- hive中order by、distribute by、sort by和cluster by的区别和联系
hive中order by.distribute by.sort by和cluster by的区别和联系 order by order by 会对数据进行全局排序,和oracle和mysql等数据库中 ...
- 传统码头建设企业:Azure DevOps Server 流水线技术沟通
受某码头建设企业的邀请,与企业软件研发团队就如何利用Azure DevOps Server进行了沟通.结合企业当前技术框架和管理流程,探索利用微软Azure DevOps Server的技术能力,加强 ...
- centos上tcp抓包
tcpdump host 10.1.131.75 -i eth0 -w data.cap 其中,10.1.131.75上目标机器的IP,eth0上网卡名称,data.cap上抓包数据写入的文件.
- Disruptor系列(一)— disruptor介绍
本文翻译自Disruptor在github上的wiki文章Introduction,原文可以看这里. 一.前言 作为程序猿大多数都有对技术的执着,想在这个方面有所提升.对于优秀的事物保持积极学习的心态 ...
- 休谟:《人性论》一书中提出的要重视"是"与"应该"的区别
"价值"最初是经济学的范畴,指的是经济价值.商品价值.价值作的为一个哲学概念,首先大概是由18 世纪的英国哲学家休谟(David H ume,1711-1776)提出的.他于173 ...
- sysstat工具包之mpstat
mpstat 1 简介 mpstat是一个实时监控工具,主要报告与CPU相关统计信息,信息存放在/proc/stat文件中: 在多核心cpu系统中,不仅可以查看cpu平均信息,还可以查看指定cpu信息 ...
- VM1059 bootstrap-table.min.js:7 Uncaught TypeError: Cannot read property 'classes' of undefined
参考链接:https://blog.csdn.net/liuqianspq/article/details/81868283 1.阳光明媚的下午,我在写CRUD,让数据传到前端的时候,解析的时候报错了 ...
- 永久清理git中的历史大文件
原文发布于:https://www.chenxublog.com/2019/05/26/remove-git-big-files.html 有写老的git仓库,因为当年的无知,不会用.gitignor ...
- asp.net 获取当前,相对,绝对路径
一.C#获取当前路径的方法: 1. System.Diagnostics.Process.GetCurrentProcess().MainModule.FileName -获取模块的完整路径. 2. ...
- Android App压力测试方法(Monkey)
一.为什么要开展压力测试 a.提高产品的稳定性:b.提高产品的留存率 二.什么时候开展压力测试 a.首轮功能测试通过后:b.下班后的夜间进行 三.7个基础知识(理论部分) 3.1 手动测试场景与自动测 ...