反向传播BP算法
前向传播模型
一般我们使用的公式是:
\[
a=\frac{1}{1+\exp \left(-\left(w^{T} x+b\right)\right)} = \frac{1}{1+\exp \left(-\left[w^{T} \quad b\right] \cdot[x \quad 1]\right)}
\]
对于隐层有多个神经元的情况就是:
\[
\begin{array}{l}{a_{1}=\frac{1}{1+\exp \left(w^{(1) T} x+b_{1}\right)}} \\ {\vdots} \\ {a_{m}=\frac{1}{1+\exp \left(w^{(m) T} x+b_{m}\right)}}\end{array}
\]
记为:\(z=W x+b\)
\[
\left[ \begin{array}{c}{a^{(1)}} \\ {\vdots} \\ {a^{(m)}}\end{array}\right]=\sigma(z)=\sigma(W x+b)
\]
反向传播中的微积分计算
现在假设我们有一个三层神经网络,我们简单的表示成:
\[
C\left(w_{1}, b_{1}, w_{2}, b_{2}, w_{3}, b_{3}\right)
\]
我们需要调整的就是这些变量,我们的目的就是希望这些变量作为参数,损失函数梯度下降的最快,
现在假设我们每层只有一个神经元,我们将神经网络最后一层得神经元用 \(a^{(L)}\)来表示,这一个损失函数我们可以表示成:\(\operatorname{cost} \longrightarrow C_{0}(\ldots)=\left(a^{(L)}-y\right)^{2}\)
我们从倒数第二层 \(a^{(L-1)}\) 到 \(a^{(L)}\) 层的时候,由下面的公示的得到:
\[
\begin{aligned} z^{(L)} &=w^{(L)} a^{(L-1)}+b^{(L)} \\ a^{(L)} &=\sigma\left(z^{(L)}\right) \end{aligned}
\]
这个是前向传播的公式:现在我们想要损失函数下降的越快,那么 \(C\) 对 \(w\) 越敏感,下降得越快。这里我们将上面的求导用链式法则,只是简单的列出来,
\[
\frac{\partial C_{0}}{\partial w^{(L)}}=\frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C 0}{\partial a^{(L)}}
\]
现在我们分别对上面公式后面的三个求导:
\[
\begin{aligned} \frac{\partial C_0}{\partial a^{(L)}} &=2\left(a^{(L)}-y\right) \\ \frac{\partial a^{(L)}}{\partial z^{(L)}} &=\sigma^{\prime}\left(z^{(L)}\right) \\ \frac{\partial z^{(L)}}{\partial w^{(L)}} &=a^{(L-1)} \end{aligned}
\]
然后我们得到下面的公式:
\[
\frac{\partial C_{0}}{\partial w^{(L)}}=\frac{\partial z^{(L)}}{\partial w^{(L)}} \frac{\partial a^{(L)}}{\partial z^{(L)}} \frac{\partial C _{0}}{\partial a^{(L)}}=a^{(L-1)} \sigma^{\prime}\left(z^{(L)}\right) 2\left(a^{(L)}-y\right)
\]
对于这个式子,说明了梯度与哪些因素相关:由于上面的式子,我们只考虑了最终输出的一个元素,由于最后的网络输出的是一层,所以最后一层的神经元求得偏置应该是:
\[
\frac{\partial C}{\partial w^{(L)}}=\frac{1}{n} \sum_{k=0}^{n-1} \frac{\partial C_{k}}{\partial w^{(L)}}
\]
上述只是对一个偏置 \(w(L)\) 求梯度,而我们要对所有的偏置求梯度,那就是:
\[
\nabla C=\left[ \begin{array}{c}{\frac{\partial C}{\partial w^{(1)}}} \\ {\frac{\partial C}{\partial b^{(1)}}} \\ {\vdots} \\ {\frac{\partial C}{\partial w^{(L)}}} \\ {\frac{\partial C}{\partial b^{(L)}}}\end{array}\right]
\]
每层有多个神经元时
前面我们假设的是每层只有一个神经元,现在我们假设每层有多个神经元,我们表示神经网络如下:
我们下一层的计算方法本质上是一样的:
\[
z_{j}^{(L)}=w_{j 0}^{(L)} a_{0}^{(L-1)}+w_{j 1}^{(L)} a_{1}^{(L-1)}+w_{j 2}^{(L)} a_{2}^{(L-1)}+b_{j}^{(L)}
\]
\[
a_{j}^{(L)}=\sigma\left(z_{j}^{(L)}\right)
\]
上面的公式如果写成向量的形式,本质上与每层只有一个神经元是一样的。
此时我们的损失函数就是:
\[
C_{0}=\sum_{j=0}^{n_{L}-1}\left(a_{j}^{(L)}-y_{j}\right)^{2}
\]
损失函数对偏置求导:
\[
\frac{\partial C_{0}}{\partial w_{j k}^{(L)}}=\frac{\partial z_{j}^{(L)}}{\partial w_{j k}^{(L)}} \frac{\partial a_{j}^{(L)}}{\partial z_{j}^{(L)}} \frac{\partial C_{0}}{\partial a_{j}^{(L)}}
\]
这个公式和每层只有一个神经元本质是一样的。
这里我们求的是最后一层,而反向传播的本质是要不断的向后,也就是从最后一层到倒数第二层,一直反向。上面我们求的是倒数第二层到最后一层的 \(w_{j k}^{(L)}\) 对最后一层损失函数的影响,那么再往后该怎么计算呢?所以我们要知道倒数第二层的期望值,所以我们用最后一层对倒数第二层求偏导:
\[
\frac{\partial C_{0}}{\partial a_{k}^{(L-1)}}=\sum_{j=0}^{n_{L}-1} \frac{\partial z_{j}^{(L)}}{\partial a_{k}^{(L-1)}} \frac{\partial a_{j}^{(L)}}{\partial z_{j}^{(L)}} \frac{\partial C_{0}}{\partial a_{j}^{(L)}}
\]
这样我们可以得到期望的 \(a ^{(L-1)}\), 也就算到了倒数第二层,然后我们再用这一层继续往后修正神经网络中的参数就可以了。
本质上就是,每一层的损失函数有三个参数:
\[
\begin{aligned} z^{(L)} &=w^{(L)} a^{(L-1)}+b^{(L)} \\ a^{(L)} &=\sigma\left(z^{(L)}\right) \end{aligned}
\]
分别是 \(w^{(L)}\) 和 \(a^{(L-1)}\) 以及$ b^{(L)}$. 所以我们对他们三个求偏导,也就是梯度下降求最优解来优化这三个参数。
反向传播BP算法的更多相关文章
- 神经网络——反向传播BP算法公式推导
在神经网络中,当我们的网络层数越来越多时,网络的参数也越来越多,如何对网络进行训练呢?我们需要一种强大的算法,无论网络多复杂,都能够有效的进行训练.在众多的训练算法中,其中最杰出的代表就是BP算法,它 ...
- 神经网络,前向传播FP和反向传播BP
1 神经网络 神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入.例如,下图就是一个简单的神经网络: 我们使用圆圈来表示神经网络的输入,标上“”的圆 ...
- 手写BP(反向传播)算法
BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新. 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: ...
- 反向传播BP为什么高效
之前有一篇文章讲了反向传播的原理: 下面这篇文章讲了反向传播为什么高效: https://blog.csdn.net/lujiandong1/article/details/52716726 主要通过 ...
- Backpropagation反向传播算法(BP算法)
1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...
- BP(back propagation)反向传播
转自:http://www.zhihu.com/question/27239198/answer/89853077 机器学习可以看做是数理统计的一个应用,在数理统计中一个常见的任务就是拟合,也就是给定 ...
- 前向传播算法(Forward propagation)与反向传播算法(Back propagation)
虽然学深度学习有一段时间了,但是对于一些算法的具体实现还是模糊不清,用了很久也不是很了解.因此特意先对深度学习中的相关基础概念做一下总结.先看看前向传播算法(Forward propagation)与 ...
- ML(5)——神经网络2(BP反向传播)
上一章的神经网络实际上是前馈神经网络(feedforward neural network),也叫多层感知机(multilayer perceptron,MLP).具体来说,每层神经元与下一层神经元全 ...
- [NN] 对于BackPropagation(BP, 误差反向传播)的一些理解
本文大量参照 David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams, Learning representation by bac ...
随机推荐
- nodeJS实现简易爬虫
nodeJS实现简易爬虫 需求:使用nodeJS爬取昵图网某个分类下的图片并存入本地 运用nodeJS自带系统模块http.fs 示例代码: var http =require('http'); va ...
- hadoop2.8 ha 集群搭建
简介: 最近在看hadoop的一些知识,下面搭建一个ha (高可用)的hadoop完整分布式集群: hadoop的单机,伪分布式,分布式安装 hadoop2.8 集群 1 (伪分布式搭建 hadoop ...
- java开发手册-总结与补充
1.分层领域模型规约 1.DO( Data Object):与数据库表结构一一对应,通过 DAO 层向上传输数据源对象. 2.DTO( Data Transfer Object):数据传输对象, Se ...
- 【OGG】OGG简单配置双向复制(三)
[OGG]OGG简单配置双向复制(三) 一.1 BLOG文档结构图 一.2 前言部分 一.2.1 导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识,~O ...
- 【RAC】rac环境下的数据库备份与还原
[RAC]rac环境下的数据库备份与还原 一.1 BLOG文档结构图 一.2 前言部分 一.2.1 导读 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道的知识,~ ...
- Gtest:源码解析
转自:玩转Google开源C++单元测试框架Google Test系列(gtest)之七 - 深入解析gtest 一.前言 “深入解析”对我来说的确有些难度,所以我尽量将我学习到和观察到的gtest内 ...
- Pyspark中遇到的 java.io.IOException: Not a file 和 pyspark.sql.utils.AnalysisException: 'Table or view not found
最近执行pyspark时,直接读取hive里面的数据,经常遇到几个问题: 1. java.io.IOException: Not a file —— 然而事实上文件是存在的,是 hdfs 的默认路径 ...
- 快捷定位目录 z武器
z的源码在这里:https://github.com/rupa/z/blob/master/z.sh 1.把源码复制到你的用户目录下的z.sh文件, 2.然后用vim打开.bashrc这个目录,在最后 ...
- PHP——数组根据某一键值合并
前言 其实要实现很简单直接foreach,再根据PHP中数组的特性就可以轻松实现. 步骤 这是源数据的格式 $info = [ [ "gname" => "特别关心 ...
- jQuery通用遍历方法each的实现
each介绍 jQuery 的 each 方法,作为一个通用遍历方法,可用于遍历对象和数组. 语法为: jQuery.each(object, [callback]) 回调函数拥有两个参数:第一个为对 ...