一、共享变量

1、共享变量工作原理

Spark一个非常重要的特性就是共享变量。

默认情况下,如果在一个算子的函数中使用到了某个外部的变量,那么这个变量的值会被拷贝到每个task中。此时每个task只能操作自己的那份变量副本。如果多个task想
要共享某个变量,那么这种方式是做不到的。 Spark为此提供了两种共享变量,一种是Broadcast Variable(广播变量),另一种是Accumulator(累加变量)。Broadcast Variable会将使用到的变量,仅仅为每个节点拷贝
一份,更大的用处是优化性能,减少网络传输以及内存消耗。Accumulator则可以让多个task共同操作一份变量,主要可以进行累加操作。

2、Broadcast Variable

Spark提供的Broadcast Variable,是只读的。并且在每个节点上只会有一份副本,而不会为每个task都拷贝一份副本。因此其最大作用,就是减少变量到各个节点的网络传
输消耗,以及在各个节点上的内存消耗。此外,spark自己内部也使用了高效的广播算法来减少网络消耗。 可以通过调用SparkContext的broadcast()方法,来针对某个变量创建广播变量。然后在算子的函数内,使用到广播变量时,每个节点只会拷贝一份副本了。每个节点可以使
用广播变量的value()方法获取值。记住,广播变量,是只读的。 ------java实现------ package cn.spark.study.core; import java.util.Arrays;
import java.util.List; import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.broadcast.Broadcast; /**
* 广播变量
* @author bcqf
*
*/ public class BroadcastVariable {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("BroadcastVariable").setMaster("local"); JavaSparkContext sc = new JavaSparkContext(conf); // 在java中,创建共享变量,就是调用SparkContext的broadcast()方法
// 获取的返回结果是Broadcast<T>类型
final int factor = 3;
final Broadcast<Integer> factorBroadcast = sc.broadcast(factor); List<Integer> numberList = Arrays.asList(1,2,3,4,5); JavaRDD<Integer> numbers = sc.parallelize(numberList); //让集合中的每个数字,都乘以外部定义的那个factor
JavaRDD<Integer> multipleNumbers = numbers.map(new Function<Integer, Integer>() { private static final long serialVersionUID = 1L; @Override
public Integer call(Integer v1) throws Exception {
// 使用共享变量时,调用其value()方法,即可获取其内部封装的值
int factor = factorBroadcast.value();
return v1 * factor;
}
}); multipleNumbers.foreach(new VoidFunction<Integer>() { private static final long serialVersionUID = 1L; @Override
public void call(Integer t) throws Exception {
System.out.println(t);
}
}); sc.close();
}
} //结果

3
6
9
12
15


--------scala实现--------

package cn.spark.study.core

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext object BroadcastVariable {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("BroadcastVariable").setMaster("local")
val sc = new SparkContext(conf) val factor = 3;
val factorBroadcast = sc.broadcast(factor) val numberArray = Array(1,2,3,4,5)
val numbers = sc.parallelize(numberArray, 1) val multipleNumbers = numbers.map { num => num * factorBroadcast.value}
multipleNumbers.foreach { num => println(num)}
}
}

3、Accumulator

Spark提供的Accumulator,主要用于多个节点对一个变量进行共享性的操作。Accumulator只提供了累加的功能。但是确给我们提供了多个task对一个变量并行操作的功能。
但是task只能对Accumulator进行累加操作,不能读取它的值。只有Driver程序可以读取Accumulator的值。 ------java实现------- package cn.spark.study.core; import java.util.Arrays;
import java.util.List; import org.apache.spark.Accumulator;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.VoidFunction; public class AccumulatorVariable {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("Accumulator").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf); // 创建Accumulator变量
// 需要调用SparkContext的accumulator()方法
final Accumulator<Integer> sum = sc.accumulator(0); List<Integer> numberList = Arrays.asList(1,2,3,4,5);
JavaRDD<Integer> numbers = sc.parallelize(numberList); numbers.foreach(new VoidFunction<Integer>() { private static final long serialVersionUID = 1L; @Override
public void call(Integer t) throws Exception {
// 然后在函数内部,就可以对Accumulator变量,调用add()方法,累加值
sum.add(t);
}
}); // 在driver程序中,可以调用Accumulator的value()方法,获取其值
System.out.println(sum.value()); sc.close();
} } //结果
15 --------scala实现--------- package cn.spark.study.core import org.apache.spark.SparkConf
import org.apache.spark.SparkContext object AccumulatorVariable {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("AccumulatorVariable").setMaster("local")
val sc = new SparkContext(conf) val sum = sc.accumulator(0) val numberArray = Array(1,2,3,4,5)
val numbers = sc.parallelize(numberArray, 1)
numbers.foreach {num => sum += num } println(sum)
}
}

9、共享变量(Broadcast Variable和Accumulator)的更多相关文章

  1. 08、共享变量(Broadcast Variable和Accumulator)

    共享变量工作原理 Spark一个非常重要的特性就是共享变量.   默认情况下,如果在一个算子的函数中使用到了某个外部的变量,那么这个变量的值会被拷贝到每个task中.此时每个task只能操作自己的那份 ...

  2. Spark2.x(六十二):(Spark2.4)共享变量 - Broadcast原理分析

    之前对Broadcast有分析,但是不够深入<Spark2.3(四十三):Spark Broadcast总结>,本章对其实现过程以及原理进行分析. 带着以下几个问题去写本篇文章: 1)dr ...

  3. (升级版)Spark从入门到精通(Scala编程、案例实战、高级特性、Spark内核源码剖析、Hadoop高端)

    本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课 ...

  4. spark 学习路线及参考课程

    一.Scala编程详解: 第1讲-Spark的前世今生 第2讲-课程介绍.特色与价值 第3讲-Scala编程详解:基础语法 第4讲-Scala编程详解:条件控制与循环 第5讲-Scala编程详解:函数 ...

  5. Spark踩坑记——共享变量

    [TOC] 前言 Spark踩坑记--初试 Spark踩坑记--数据库(Hbase+Mysql) Spark踩坑记--Spark Streaming+kafka应用及调优 在前面总结的几篇spark踩 ...

  6. Spark分布式编程之全局变量专题【共享变量】

    转载自:http://www.aboutyun.com/thread-19652-1-1.html 问题导读 1.spark共享变量的作用是什么?2.什么情况下使用共享变量?3.如何在程序中使用共享变 ...

  7. Spark共享变量(广播变量、累加器)

    转载自:https://blog.csdn.net/Android_xue/article/details/79780463 Spark两种共享变量:广播变量(broadcast variable)与 ...

  8. Spark踩坑记:共享变量

    收录待用,修改转载已取得腾讯云授权 前言 前面总结的几篇spark踩坑博文中,我总结了自己在使用spark过程当中踩过的一些坑和经验.我们知道Spark是多机器集群部署的,分为Driver/Maste ...

  9. 常用Actoin算子 与 内存管理 、共享变量、内存机制

    一.常用Actoin算子 (reduce .collect .count .take .saveAsTextFile . countByKey .foreach ) collect:从集群中将所有的计 ...

随机推荐

  1. CF1097G Vladislav and a Great Legend 组合、树形背包

    传送门 看到\(k\)次幂求和先用斯特林数拆幂:\(x^k = \sum\limits_{i=1}^k \binom{x}{i}\left\{ \begin{array}{cccc} k \\ i \ ...

  2. Ted演讲 The secrets of learning a new language

    第一次写这么多英文~~对照双语字幕整理的~~ 这是我很喜欢的一个演讲~~ 让我们一起学英文吧 l  I love learning foreign languages. l  In fact, I l ...

  3. IdentityServer4:发布环境的数字签名证书

    一,jwt的三个组成部件 先来看一个由IdentityServer颁发的一个标准令牌 eyJhbGciOiJSUzI1NiIsImtpZCI6IjBiNTE3ZjIzYWY0OGM4ZjkyZjExM ...

  4. C# vb .net实现扭曲角特效滤镜图像处理

    在.net中,如何简单快捷地实现Photoshop滤镜组中的扭曲角效果呢?答案是调用SharpImage!专业图像特效滤镜和合成类库.下面开始演示关键代码,您也可以在文末下载全部源码: 设置授权 第一 ...

  5. ping pathping tcping psping tracert

    ping pathping tcping psping tracert 1.Ping命令. 当您的机器不能访问Internet,首先确认是否是本地局域网的故障.假定局域网的代理服务器IP地址为202. ...

  6. src属性与浏览器渲染

    img标签 只要设置了src属性, 就会开始下载,因此可以使用这个特性,配合display:none,默默的下载一些图片,用的时候直接用,快了那么一丢丢~ 注意:不一定要添加到文档后才会开始下载,是只 ...

  7. linux 内网时间同步配置

    在工作中,内网环境机器的时间会有所差异,在某些测试环境下需要一毫秒都不允许出现误差,但又不想同步外网时间,那我们可以选择一台机器作为时间服务器来供其他机器进行时间同步,例如每隔1分钟同步一次时间. 一 ...

  8. CentOS 6.5本地yum源、局域网离线yum仓库(断网情况下轻松安装各种依赖包)

    在工作中, 公司的服务器大部分都禁止连接外网的,初始化系统,测试某些产品时,往往缺一些软件或依赖包,一个个上传到机器,如此浪费时间,浪费金钱,en...yum能够自动查找并解决rpm包之间的依赖关系, ...

  9. MYSQL 存储引擎概述

    一.存储引擎 Mysql中的数据用各种不同的技术存储在文件(或者内存)中.这些技术中每一种技术都使用了不同的存储机制,索引技巧.锁定水平并且最终提供广泛的不同功能和能力.通过选择不同的技术,你能够获得 ...

  10. MySQL学习之基础篇09-事务

    我们在建表的时候通常会在最后声明引擎类型,这次我们就来看看存储引擎都有哪些: 举个例子: --------------------------- 银行转账: 张三想给李四转500元钱: 张三-500 ...