传送门

\(A\)

什么玩意儿……

const char t[]={"0CODEFESTIVAL2016"};
char s[25];int res;
int main(){
scanf("%s",s+1);
fp(i,1,16)res+=s[i]!=t[i];
printf("%d\n",res);
return 0;
}

\(B\)

什么玩意儿……

const int N=1e5+5;
char s[N];int a,b,n,c,cc;
int main(){
scanf("%d%d%d%s",&n,&a,&b,s+1),a+=b;
fp(i,1,n){
switch(s[i]){
case 'c':puts("No");break;
case 'a':puts(c+1<=a?(++c,"Yes"):"No");break;
case 'b':puts(c+1<=a&&cc+1<=b?(++c,++cc,"Yes"):"No");break;
}
}
return 0;
}

\(C\)

显然需要连成一棵树,且贪心选取边来连接,如果当前连的边是左右连接的,且上下连接的边总共连了\(c\)条,那么说明每一列只有\(m+1-c\)个连通块了,那么当前边只需要连这么多条

//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
typedef long long ll;
const int N=5e5+5;
ll res;int a[N],op[N],id[N],top,n,m,c,d;
inline bool cmp(const int &x,const int &y){return a[x]<a[y];}
int main(){
scanf("%d%d",&n,&m);
fp(i,1,n)++top,scanf("%d",&a[top]),op[top]=0,id[top]=top;
fp(i,1,m)++top,scanf("%d",&a[top]),op[top]=1,id[top]=top;
sort(id+1,id+1+top,cmp);
fp(i,1,top){
// printf("%d %d %d\n",id[i],a[id[i]],op[id[i]]);
if(!op[id[i]])res+=1ll*a[id[i]]*(m+1-d),++c;
else res+=1ll*a[id[i]]*(n+1-c),++d;
}
printf("%lld\n",res);
return 0;
}

\(D\)

还是贪心,一个贪心是先处理完前面再处理完后面,一个贪心是对于每一个点选择可以卖给他的价格最小的物品卖,记前\(i-1\)个人中剩余钱数最多的人钱数为\(mn\),那么卖给第\(i\)个人的商品价格就是\(mn+1\),如果\(a_i=mn+1\)就一个都买不了,并且\(++mn\),否则我们贪心卖到至少还有一元钱剩余就行了

然而有一种情况是第\(i\)个人还剩下恰好\(mn+1\)元,根据贪心期间肯定是不让\(mn\)增加最优,那么我们肯定可以在之前得到某一次卖的商品价格\(+1\),这样就不会令\(mn\)增加了

//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
typedef long long ll;
const int N=5e5+5,inf=0x3f3f3f3f;
ll res;int a[N],n,mn;
int main(){
scanf("%d",&n);
fp(i,1,n)scanf("%d",&a[i]);
res=a[1]-1,mn=1;
fp(i,2,n){
if(a[i]==mn+1)++mn;
else res+=(a[i]-1)/(mn+1);
}
printf("%lld\n",res);
return 0;
}

\(E\)

首先考虑一个暴力的想法,先把所有的串扔到\(trie\)树里,然后对于询问直接在\(trie\)树上匹配这个串,同时把所有字典序小于当前转移的子树里的串的个数加入答案

这样显然要挂掉,而且我们也不可能\(26!\)枚举所有字母的大小

设\(i,j\)为两个不同的转移,考虑到\(i\)这个转移会对\(j\)的子树造成贡献,当且仅当重定义之后的字母中\(i<j\),也就是说会对答案造成影响的总共只有\(26\times 26\)种状态

那么我们对于\(trie\)树上的每一个节点,记录一个\(cnt[p][i]\),表示当处于节点\(p\),且状态为\(i\)(\(i\)表示一种大小关系,假设它表示\(a<b\),也就是说\(a\)这个字母字典序比\(b\)小),此时按照暴力匹配之后的贡献是多少,即从根节点走到\(p\)的过程中如果转移是\(b\)就加上\(a\)那棵子树的\(size\),那么\(cnt[p][i]\)表示那些\(size\)的和

这样对于一个询问,直接枚举所有的大小关系并加上对应的贡献即可

复杂度\(O((n+q)26^2)\)

具体细节可以参考代码

//quming
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
const int N=5e5+5,M=676;
char t[N];int sz[N],size[N],pos[N],fa[N],ch[N][26];
int id[N],bg[N],len[N],pi[26],n,q,nd;
vector<int>cnt[N];
void ins(R int ID,R int len){
R int p=0;
for(R int i=1,c;i<=len;++i){
c=t[i]-'a';
if(!ch[p][c])ch[p][c]=++nd;
p=ch[p][c],++sz[p];
}
id[p]=ID,pos[ID]=p;
}
void dfs(int p,int ga,int s){
fa[p]=ga;if(ga==-1)cnt[p].resize(M),fa[p]=p;
if(id[p])++s,size[id[p]]=s;
R int cp=0;fp(i,0,25)cp+=(ch[p][i]!=0);
ga=fa[p];if(cp>1)ga=-1;
fp(i,0,25)if(ch[p][i])dfs(ch[p][i],ga,s);
}
void dd(int p,int ga){
if(p&&fa[p]==p)fp(i,0,M-1)cnt[p][i]+=cnt[ga][i];
fp(i,0,25)if(ch[p][i])fp(j,i+1,25)if(ch[p][j]){
cnt[ch[p][i]][j*26+i]+=sz[ch[p][j]];
cnt[ch[p][j]][i*26+j]+=sz[ch[p][i]];
}
fp(i,0,25)if(ch[p][i])dd(ch[p][i],fa[p]);
}
int solve(int k){
R int res=size[k];
fp(i,0,25)fp(j,i+1,25)res+=cnt[fa[pos[k]]][pi[i]*26+pi[j]];
return res;
}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d",&n);
fp(i,1,n)scanf("%s",t+1),len[i]=strlen(t+1),ins(i,len[i]);
dfs(0,-1,0);dd(0,-1);
scanf("%d",&q);
for(R int k;q;--q){
scanf("%d%s",&k,t+1);
fp(i,1,26)pi[i-1]=t[i]-'a';
printf("%d\n",solve(k));
}
return 0;
}

CODE FESTIVAL 2016 qual B题解的更多相关文章

  1. CODE FESTIVAL 2016 qual C题解

    传送门 \(A\) 什么玩意儿-- const int N=105; char s[N];int n,f1,f2; int main(){ scanf("%s",s+1),n=st ...

  2. CODE FESTIVAL 2016 qual A题解

    传送门 不知道为什么\(AGC\)系列的题里突然多了这些--那就做吧-- \(A\) 什么玩意儿-- upd:因为没看到最后要加换行居然没有\(1A\)好气哦-- const int N=15; ch ...

  3. 【AtCoder】CODE FESTIVAL 2016 qual B

    CODE FESTIVAL 2016 qual B A - Signboard -- #include <bits/stdc++.h> #define fi first #define s ...

  4. 【AtCoder】CODE FESTIVAL 2016 qual A

    CODE FESTIVAL 2016 qual A A - CODEFESTIVAL 2016 -- #include <bits/stdc++.h> #define fi first # ...

  5. 【AtCoder】CODE FESTIVAL 2016 qual C

    CODE FESTIVAL 2016 qual C A - CF -- #include <bits/stdc++.h> #define fi first #define se secon ...

  6. Atcoder CODE FESTIVAL 2016 qual C 的E题 Encyclopedia of Permutations

    题意: 对于一个长度为n的排列P,如果P在所有长度为n的排列中,按照字典序排列后,在第s位,则P的value为s 现在给出一个长度为n的排列P,P有一些位置确定了,另外一些位置为0,表示不确定. 现在 ...

  7. CODE FESTIVAL 2017 qual A 题解

    补一发A的题解. A - Snuke's favorite YAKINIKU 题意: 输入字符串S,如果以YAKI开头输出Yes,否则输出No. #include<bits/stdc++.h&g ...

  8. CODE FESTIVAL 2016 Grand Final 题解

    传送门 越学觉得自己越蠢--这场除了\(A\)之外一道都不会-- \(A\) 贪心从左往右扫,能匹配就匹配就好了 //quming #include<bits/stdc++.h> #def ...

  9. CODE FESTIVAL 2017 qual B 题解

    失踪人口回归.撒花\^o^/ 说来真是惭愧,NOI之后就没怎么刷过题,就写了几道集训队作业题,打了几场比赛还烂的不行,atcoder至今是蓝名=.= 以后还是多更一些博客吧,我可不想清华集训的时候就退 ...

随机推荐

  1. go 学习笔记(2)go test

    Test 的写法: 每一个test文件必须import 一个"testing" test文件下的每一个test case均必须以Test开头并且符合TestXxx形式,否则go t ...

  2. redis的事务处理

    1.redis事务可以依次执行多个命令,并且带有以下三个重要的保证: 批量操作在发送exec命令前被放入队列缓存. 收到exec命令后进入事务执行,事务中任意命令执行失败,其余的命令依然被执行. 在事 ...

  3. 14-2 SQL语言简介

    1.结构化查询语言(Structured Query Language,SQL),常被读作sequel,最初是由Microsoft.Sybase和Ashton-Tate这3家公司共同开发的. 2.Wi ...

  4. RabbitMQ实战-死信队列

    RabbitMQ死信队列 场景说明 代码实现 简单的Util 生产者 消费者 场景说明 场景: 当队列的消息未正常被消费时,如何解决? 消息被拒绝并且不再重新投递 消息超过有效期 队列超载 方案: 未 ...

  5. django+celery+redis环境配置

    celery是python开发的分布式任务调度模块 Celery本身不含消息服务,它使用第三方消息服务来传递任务,目前,celery支持的消息服务有RabbitMQ,redis甚至是数据库,redis ...

  6. 用于RISC-V的Makefile示例

    # Initialize ASM For RISC-V .section .text.entry .option norvc .global _start .macro push_reg addi s ...

  7. Tortoise SVN常见图标含义及图标无法正常解决方法!

    转自:https://blog.csdn.net/xh16319/article/details/10582455 绿色的勾:图标表示这是一个最新取出的工作副本,他的Subversion状态是norm ...

  8. Python学习日记(十三) 递归函数和二分查找算法

    什么是递归函数? 简单来说就是在一个函数中重复的调用自己本身的函数 递归函数在调用的时候会不断的开内存的空间直到程序结束或递归到一个次数时会报错 计算可递归次数: i = 0 def func(): ...

  9. Win10 C盘 系统和保留 占用空间 非常大

    Win10 C盘 系统和保留 占用空间 非常大今天在写代码的时候,突然发现Redis起不来了,一看原因,是因为C盘空间不足.然后,我看了下C盘,发现...一个叫系统和保留的东西,居然占了110G的空间 ...

  10. 适合公司和个人的目标管理方法:OKR!

    1.定义   OKR就是Objectives and Key Results的简称,包括目标(Objectives)和关键结果(Key Results)两个要素.   2.目的    就公司和团队而言 ...