今天继续学习文件与io,主要是学习文件共享及文件、复制文件描述符,有点抽象,主要是概念上的理解,但是很重要,下面一一来分解:

文件共享:
回顾一下,在linux系统调用中,是通过文件描述符来访问文件的,文件描述符是一个非负的整数,这是站在用户的观点来看的,实际上在linux内核上是有一定的数据结构来表示文件描述符的,下面就从三方面来看图分析一下内核中是怎么来表示打开的文件的:
一个进程打开两个文件内核数据结构:
 
(说明:关于这点,可以看一下我之前的博客:http://www.cnblogs.com/webor2006/p/3487718.html)
所以,由于文件描述符0、1、2被占用了,则我们用户打开的文件描述符只能从第3开始了:
如图上所示,对于内核,当打开一个文件时,会有一张表格来记录文件的状态,回顾一下,当我们在读取文件内容的时候,会自动的从当前文件的偏移位置去读取下一个数据,在文件的随机读写中已经介绍过(http://www.cnblogs.com/webor2006/p/3493218.html),原因就在于这个偏移量就保存在文件表当中的:
 
而每当我们打开一个文件时,内核就会为文件分配一个文件表,里面有不同的项,其中当前文件偏移量就是一个文件表项
回忆一下,我们打开一个文件,可以以读、写、追加、同步、非阻塞(这个之后会学到)等方式打开,用来描述它的就是另一个文件表项:文件状态标志
 
另外图中还有一个文件引用计数,它是用来描述一个文件被多少个文件描述符指向了(这个在下面的复制文件描述符中就可以体会到了):
 
另外,还有一个文件表项,它是v节点指针,它指向了v节点表,如图所示:
其中v节点表中,存放了两项很重要的信息,一个是v节点信息,一个是i节点信息:
v节点信息:我们上节学习的stat函数获得文件信息返回的状态信息就全保存在v节点信息里(http://www.cnblogs.com/webor2006/p/3496281.html):
i节点信息:当我们打开一个文件时,会将文件系统当中的i结点数据拷贝到v节点表中的i节点信息所存放的位置,比如说:
 
一个进程两次打开同一个文件内核数据结构:
 
下面以具体代码来进行说明:
#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h> #include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h> #define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
} while() int main(int argc, char *argv[])
{
int fd1;
int fd2;
char buf1[] = {};
char buf2[] = {};
fd1 = open("test.txt", O_RDONLY);//以只读的方式打开文件
if (fd1 == -)
ERR_EXIT("open error");
read(fd1, buf1, );
printf("buf1=%s\n", buf1); fd2 = open("test.txt", O_RDWR);//以读写的方式打开文件
if (fd2 == -)
ERR_EXIT("open error"); read(fd2, buf2, );
printf("buf2=%s\n", buf2); close(fd1);
close(fd2);
return ;
}

先新建一个test.txt,里面输点测试内容:

编译运行:

也就是各个描述符有各自的偏移量,当buf1输出ABCDE时,如果第二个描述符共享偏移量的话,应该buf2输出FGhel,但是buf2输出的也是ABCDE,也就说明了各个文件描述符有不同的文件表项。

#include <unistd.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h> #include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h> #define ERR_EXIT(m) \
do \
{ \
perror(m); \
exit(EXIT_FAILURE); \
} while() int main(int argc, char *argv[])
{
int fd1;
int fd2;
char buf1[] = {};
char buf2[] = {};
fd1 = open("test.txt", O_RDONLY);
if (fd1 == -)
ERR_EXIT("open error");
read(fd1, buf1, );
printf("buf1=%s\n", buf1); fd2 = open("test.txt", O_RDWR);
if (fd2 == -)
ERR_EXIT("open error"); read(fd2, buf2, );
printf("buf2=%s\n", buf2);
write(fd2, "AAAAA", 5); memset(buf1, 0, sizeof(buf1));
read(fd1, buf1, 5);
printf("buf1=%s\n"
, buf1);
close(fd1);
close(fd2);
return ;
}

编译运行:

这结果为什么是它呢?下面来分析下:

write(fd2, "AAAAA", 5);

这时我们先来查看下test.txt的内容:

由于它会改变v节点表中的i节点信息所指向磁盘中的数据,而两个文件描述符的v节点表是共享的,而fd1此时的偏移量为5:

总结:每打开一个文件描述符,就有一个对应的文件表项描述,而如果打开的是同一个文件,v节点表是共享的 
 
两个进程打开同一个文件内核数据结构:
说明:不同的进程可以打开同一个文件,但是每个进程的文件描述符对应一个独立的文件表项,而最终共享v节点表。
总结:文件描述符跟文件不是一一对应的,文件描述符可以有多个,但是文件可以只有一个。
 
理解了打开的文件在内核中的结构,进而我们就可以理解复制文件描述符是怎么一回事了,如下:
复制文件描述符:
先用图来进行说明:
 
其中复制文件描述符,可以执行dup命令,注意,这时它会从0开始找出有空闲的文件描述符,如图,0、1、2是已经默认被系统给占用了,这时,执行dup之后,就会找到空闲的fd 4文件描述符,将它也指向同一个文件表,如图:
下面,以一段程序来说明一下输出重定向的原理,先复习一下什么是输出重定向:
下面,以具体程序来说明它,利用的就是复制文件描述符的知识:
先本地建一个空的test2.txt文件:
分析一下这个程序:
close(1)的作用,就是为了让输出到屏幕的文件描述符成为空闲的,然后dup时,会从0开始找空闲文件描述符,发现1是空闲的,则这时它的内存模型就变成这样了:
所以,清楚了它之后,对于ls > aa这样的输出重定向的功能,就比较容易实现了。
另外,对于复制文件描述符有三种方法:
对于dup2,理解它,我们可以将上面复制文件描述符的程序用dup2代替dup,如下:
编译运行:
 
另外第三种复制文件描述符的方法,是通过fcntl函数,它稍复杂一些,这个会在下节详细进行分析,先看一下man帮助:
其中第三个参数,可以决定复制文件描述符时,从第几个描述符开始搜索空闲,利用dup实现复制文件描述符时都是从0开始搜索的。
好了,关于fcntl的使用,下节再见!

linux系统编程之文件与io(四)的更多相关文章

  1. linux系统编程之文件与io(一)

    经过了漫长的学习,C语言相关的的基础知识算是告一段落了,这也是尝试用写博客的形式来学习c语言,回过头来看,虽说可能写的内容有些比较简单,但是个人感觉是有史起来学习最踏实的一次,因为里面的每个实验都是自 ...

  2. linux系统编程之文件与io(五)

    上一节中已经学习了文件描述符的复制,复制方法有三种,其中最后一种fcntl还并未使用到,关于这个函数,不光只有复制文件描述符的功能,还有其它一些用法,本节就对其进行一一剖析: fcntl常用操作: 这 ...

  3. linux系统编程之文件与io(二)

    今天继续学习文件与io,话不多说,开始进入正题: 文件的read和write系统调用: 说明:函数中出现在size_t和ssize_t是针对系统定制的数据类型:     下面以一个实现文件简单拷贝的示 ...

  4. linux系统编程之文件与IO(四):目录访问相关系统调用

    1. 目录操作相关的系统调用     1.1 mkdir和rmdir系统调用     1.1.1 实例     1.2 chdir, getcwd系统调用     1.2.1 实例     1.3 o ...

  5. linux系统编程之文件与IO(一):文件描述符、open,close

    什么是IO? 输入/输出是主存和外部设备之间拷贝数据的过程 设备->内存(输入操作) 内存->设备(输出操作) 高级I/O ANSI C提供的标准I/O库称为高级I/O,通常也称为带缓冲的 ...

  6. linux系统编程之文件与IO(七):时间函数小结

    从系统时钟获取时间方式 time函数介绍: 1.函数名称: localtime 2.函数名称: asctime 3.函数名称: ctime 4.函数名称: difftime 5.函数名称: gmtim ...

  7. linux系统编程之文件与IO(三):利用lseek()创建空洞文件

    一.lseek()系统调用 功能说明: 通过指定相对于开始位置.当前位置或末尾位置的字节数来重定位 curp,这取决于 lseek() 函数中指定的位置 函数原型: #include <sys/ ...

  8. linux系统编程之文件与io(三)

    上次我们利用文件的read和write来实现了简易的cp命令,其中将源文件拷贝到目标文件时,我们给目标文件的权限是写死的,而非根据源文件的权限生成的,如下: 今天就来解决这个问题,来学习获取文件权限相 ...

  9. linux系统编程之文件与IO(八):文件描述符相关操作-dup,dup2,fcntl

    本节目标: 1,文件共享 打开文件内核数据结构 一个进程两次打开同一个文件 两个进程打开同一个文件 2,复制文件描述符(dup.dup2.fcntl) 一,文件共享 1,一个进程打开两个文件内核数据结 ...

随机推荐

  1. [LeetCode] 242. Valid Anagram 验证变位词

    Given two strings s and t , write a function to determine if t is an anagram of s. Example 1: Input: ...

  2. [LeetCode] 304. Range Sum Query 2D - Immutable 二维区域和检索 - 不可变

    Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...

  3. kexue shangwang002

    需先搭建 openvpn 海外服务端, 具体参考 https://www.cnblogs.com/weifeng1463/p/11041550.html 选择阿里云华东ecs 搭建openvpn 的客 ...

  4. nodepad++格式化html代码

    如果没有安装插件

  5. React路由传参的三种方式

    方式 一:          通过params         1.路由表中                     <Route path=' /sort/:id '   component= ...

  6. c++模板使用及常见问题

    一.为什么使用模板?? 使用模板的目的是为了避免重复声明和定义一系列基本功能相同的函数或者类,其区别因传入参数的不同而产生不同类型的数据,其基本工作过程都是一致的! 二.调用模板函数产生不明确问题 ( ...

  7. CodeForces-1152C-Neko does Maths

    C. Neko does Maths time limit per test:1 second memory limit per test:256 megabytes input:standard i ...

  8. python实现查找最长公共子序列

    #!/usr/bin/python # -*- coding: UTF-8 -*- worlds = ['fosh','fort','vista','fish','hish','hello','ohd ...

  9. SpringCloud整合过程中jar依赖踩坑经验

    今天在搭建SpringCloud Eureka过程中,一直在报pom依赖错误,排查问题总结如下经验. 1.SpringBoot整合SpringCloud两者版本是有严格约束的,详细见SpringBoo ...

  10. Python之TensorFlow的变量收集、自定义命令参数、矩阵运算、梯度下降-4

    一.TensorFlow为什么要存在变量收集的过程,主要目的就是把训练过程中的数据,比如loss.权重.偏置等数据通过图形展示的方式呈现在开发者的眼前. 自定义参数:自定义参数,主要是通过Python ...