Numpy | 02 Ndarray 对象
NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引。
ndarray 对象是用于存放同类型元素的多维数组。
ndarray 中的每个元素在内存中都有相同存储大小的区域。
ndarray 内部由以下内容组成:
一个指向数据(内存或内存映射文件中的一块数据)的指针。
数据类型或 dtype,描述在数组中的固定大小值的格子。
一个表示数组形状(shape)的元组,表示各维度大小的元组。
一个跨度元组(stride),其中的整数指的是为了前进到当前维度下一个元素需要"跨过"的字节数。
ndarray 的内部结构:
跨度可以是负数,这样会使数组在内存中后向移动,切片中 obj[::-1] 或 obj[:,::-1] 就是如此。
创建ndarray
只需调用 Numpy 的 array 函数即可:
numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0)
参数说明:
名称 | 描述 |
---|---|
object | 数组或嵌套的数列 |
dtype | 数组元素的数据类型,可选 |
copy | 对象是否需要复制,可选 |
order | 创建数组的样式,C为行方向,F为列方向,A为任意方向(默认) |
subok | 默认返回一个与基类类型一致的数组 |
ndmin | 指定生成数组的最小维度 |
实例 1
import numpy as np
a = np.array([1,2,3])
print (a)
输出结果如下:
[1, 2, 3]
实例 2
# 多于一个维度
import numpy as np
a = np.array([[1, 2], [3, 4]])
print (a)
输出结果如下:
[[1, 2]
[3, 4]]
实例 3
# 最小维度
import numpy as np
a = np.array([1, 2, 3,4,5], ndmin = 2)
print (a)
输出如下:
[[1, 2, 3, 4, 5]]
实例 4
# dtype 参数
import numpy as np
a = np.array([1, 2, 3], dtype = complex)
print (a)
输出结果如下:
[ 1.+0.j, 2.+0.j, 3.+0.j]
ndarray 对象由计算机内存的连续一维部分组成,并结合索引模式,将每个元素映射到内存块中的一个位置。内存块以行顺序(C样式)或列顺序(FORTRAN或MatLab风格,即前述的F样式)来保存元素。
Numpy | 02 Ndarray 对象的更多相关文章
- 第一节:numpy之ndarray对象数据类型及属性
- Numpy Ndarray对象
Numpy 最重要的一个特点是 N 维数组对象 ndarrary ,它是一系列同类型数据的集合,以 0 下标为开始进行集合中的索引. ndarray 对象是用于存放同类型元素的多维数组. ndarra ...
- 3.1Python数据处理篇之Numpy系列(一)---ndarray对象的属性与numpy的数据类型
目录 目录 (一)简单的数组创建 1.numpy的介绍: 2.numpy的数组对象ndarray: 3.np.array(list/tuple)创建数组: (二)ndarray对象的属性 1.五个常用 ...
- NumPy Ndarray 对象
NumPy Ndarray 对象 NumPy 最重要的一个特点是其 N 维数组对象 ndarray,它是一系列同类型数据的集合,以 0 下标为开始进行集合中元素的索引. ndarray 对象是用于存放 ...
- NumPy-快速处理数据--ndarray对象--多维数组的存取、结构体数组存取、内存对齐、Numpy内存结构
本文摘自<用Python做科学计算>,版权归原作者所有. 上一篇讲到:NumPy-快速处理数据--ndarray对象--数组的创建和存取 接下来接着介绍多维数组的存取.结构体数组存取.内存 ...
- numpy模块(对矩阵的处理,ndarray对象)
6.12自我总结 一.numpy模块 import numpy as np约定俗称要把他变成np 1.模块官方文档地址 https://docs.scipy.org/doc/numpy/referen ...
- Numpy Ndarray对象1
标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三 ...
- Lesson2——NumPy Ndarray 对象
NumPy 教程目录 NumPy Ndarray 对象 NumPy 最重要的一个特点是其 $N$ 维数组对象 ndarray,它是一系列同类型数据的集合,以 $0$ 下标为开始进行集合中元素的索引. ...
- [转]Numpy中矩阵对象(matrix)
numpy模块中的矩阵对象为numpy.matrix,包括矩阵数据的处理,矩阵的计算,以及基本的统计功能,转置,可逆性等等,包括对复数的处理,均在matrix对象中. class numpy.matr ...
随机推荐
- mybatis日志,打印sql语句,输出sql
mybatis日志,打印sql语句,输出sql<?xml version="1.0" encoding="UTF-8" ?><!DOCTYPE ...
- 03、新手必须掌握的Linux命令
Ⅰ. 常用系统工作命令 1. echo 命令 echo命令用于在终端输出字符串货变量提取后的值,格式为"echo [字符串 | $变量]" 例:把指定字符串"LinxuH ...
- Windows Server2008服务器ping不通问题解决
https://blog.csdn.net/x541211190/article/details/78221949
- redis AbortOnConnectFail
AbortOnConnectFail =true 服务器上停止redis service,即便后来redis服务端修好能够接通时,也不会自动连接. 所以建议设为false
- 请实现一个js脚本,要求做到将数字转化为千分位表示如:1234567转化为1,234,567
//法一 function parseNum(num){ var list = new String(num).split('').reverse(); for(var i = 0; i < l ...
- git https解决免ssL和保存密码
1.打开windows的git bash set GIT_SSL_NO_VERIFY=true git clonegit config --global http.sslVerify false 2 ...
- OpenSessionInViewFilter 的配置及替代方案
OpenSessionInViewFilter 的配置及替代方案 博客分类: hibernate OpenSessionInViewFilter 的配置及替代方案 Spring 为我们提供了一个叫做 ...
- SparkStreaming之checkpoint检查点
一.简介 流应用程序必须保证7*24全天候运行,因此必须能够适应与程序逻辑无关的故障[例如:系统故障.JVM崩溃等].为了实现这一点,SparkStreaming需要将足够的信息保存到容错存储系统中, ...
- Python之路(第四十三篇)线程的生命周期、全局解释器锁
一.线程的生命周期(新建.就绪.运行.阻塞和死亡) 当线程被创建并启动以后,它既不是一启动就进入执行状态的,也不是一直处于执行状态的,在线程的生命周期中,它要经过新建(new).就绪(Ready).运 ...
- Odoo销售模块
转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10825988.html 一:销售模块 销售模块的用途: 1)管理销售团队.销售人员:维护销售产品: 2)管理 ...