【题解】Diferenc-Diferencija [SP10622]
【题解】Diferenc-Diferencija [SP10622]
传送门:\(\text{Diferenc-Diferencija}\) \(\text{[SP10622]}\)
【题目描述】
序列的值被定义成其中最大的元素减去最小的元素。如序列 \((3,1,7,2)\) 的值为 \(7-1=6\), 序列 \((42,42)\) 的值为 \(42-42=0\)。
现给定一长为 \(n\) 的序列 \(a\),求出所有连续子序列的值的和。
【样例】
样例输入:
3
1
2
3
样例输出:
4
样例输入:
4
7
5
7
5
样例输出:
12
样例输入:
4
3
1
7
2
样例输出:
31
【数据范围】
\(100 \%:\) \(2 \leqslant n \leqslant 3*10^5,\) \(1 \leqslant a[i] \leqslant 10^8\)
【分析】
先将子区间的右端点固定为 \(r\),此时一共有 \(r\) 个左端点 \((l \in [1,r])\) 可与之组成连续子序列,用 \(f_1[l]\) 表示 \(max \{a[j]\}(j \in [l,r])\) ,\(f_2[l]\) 表示 \(min \{a[j]\}(j \in [l,r])\) 。于是以 \(i\) 为右端点 \(r\) 的子区间贡献和为 \(\sum_{l=1}^{r} (f_1[l]-f_2[l])\),即 \(\sum_{l=1}^{r} f_1[l] - \sum_{l=1}^{r} f_2[l]\) 。我们可以分开算 \(f_1,f_2\) 的总和。
当右端点移至 \(r+1\) 时,需要用 \(a[r+1]\) 来更新 \(f_1,f_2\),可以直接扫描 \([1,r]\),但时间不过不了关。
随着 \(l\) 的减小,\(f_1[l]=max(a[l],f_1[l+1])\),可以发现 \(f_1[l]\) 是单调不下降的,同理 \(f_2[l]\) 单调不上升。
随着 \(r\) 的增大,\(f_1[l]=max(f_1[l],a[r+1])\),可以发现 \(f_1[l]\) 仍是单调不下降的,同理 \(f_2[l]\) 单调不上升。
然后我们就会发现一个现象:每次新加进来一个数 \(a[r+1]\) 时,它会将以 \(r+1\) 结尾的一段连续的区间 \(f_1[l],f_2[l](l \in [?,r+1])\) 全部赋值为 \(a[r+1]\),而且被覆盖掉的原数对这之后的区间不再有任何贡献。
于是我们可以用两个单调栈分别维护 \(f_1,f_2\),由于下标也是单调递增,所以可以将 \(f\) 值相同的合并起来,用 \(g\) 记录 \(f\) 相同的下标个数,另设一个变量 \(S\) 表示以 \(i\) 为右端点的贡献和,当加入新的 \(a[r]\) 时就不断弹走队尾直至保持单调时结束,同时更新 \(S\),最后累加答案即可。
【Code】
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define LL long long
#define Re register int
using namespace std;
const int N=3e5+2;
int n,t1,t2,a[N],f1[N],f2[N],g1[N],g2[N];LL S,ans;
inline void in(Re &x){
int f=0;x=0;char c=getchar();
while(c<'0'||c>'9')f|=c=='-',c=getchar();
while(c>='0'&&c<='9')x=(x<<1)+(x<<3)+(c^48),c=getchar();
x=f?-x:x;
}
int main(){
in(n);
for(Re i=1;i<=n;++i)in(a[i]);
f1[++t1]=a[1],f2[++t2]=a[1],g1[t1]=g2[t2]=1,ans=S=0;//初始化入队
for(Re i=2;i<=n;++i){
Re tmp=1;//f1[i]和f2[i]都一定会被覆盖,所以初始化为1
while(t1&&f1[t1]<=a[i])S-=(LL)f1[t1]*g1[t1],tmp+=g1[t1--];//更新最大值
f1[++t1]=a[i],g1[t1]=tmp,S+=(LL)a[i]*tmp;
tmp=1;
while(t2&&f2[t2]>=a[i])S+=(LL)f2[t2]*g2[t2],tmp+=g2[t2--];//更新最小值
f2[++t2]=a[i],g2[t2]=tmp,S-=(LL)a[i]*tmp;
ans+=S;//累加答案
}
printf("%lld\n",ans);
return 0;
}
【题解】Diferenc-Diferencija [SP10622]的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- redis笔记2
分布式锁的实现 锁是用来解决什么问题的; 一个进程中的多个线程,多个线程并发访问同一个资源的时候,如何解决线程安全问题. 一个分布式架构系统中的两个模块同时去访问一个文件对文件进行读写操作 多个应用对 ...
- elasticsearch7 配置篇
学习了这么多,终于开始搭建生产环境了,这一篇主要讲解配置项,以及支持中文分词的ik安装,集群的搭建. 配置项确实挺多的,但把几个常用配置熟悉就好,而且就像elasticsearch官方文档所说,不存在 ...
- maven 学习---Maven依赖管理
其中一个Maven的核心特征是依赖管理.管理依赖关系变得困难的任务一旦我们处理多模块项目(包含数百个模块/子项目). Maven提供了一个高程度的控制来管理这样的场景. 传递依赖发现 这是很通常情况下 ...
- vue---v-model的详细解答
1.v-model:双向数据绑定的实现原理 等同于一个 v-bind 加 v-on <div id="app"> <!-- <input t ...
- Django 练习班级管理系统四 -- 编辑班级
修改 classes.html {% extends "layout.html" %} {% block css %} {% endblock %} {% block conten ...
- Python列表操作与深浅拷贝(6)——列表索引、查询、修改、扩展
列表list定义 L1 = [] L2 = [1,2,'abc'] L3 = list() L4 = list(range(5)) L5 = [1,'abc',True,None,[4,5,'abc' ...
- Vuex操作步骤
概念流程图: 案例: (1)src/store/index.js导出仓库 (2)在入口文件引入仓库并派发到每个组件,在入口文件main.js引入,挂载到根组件上,方便以后使用this.$store调用 ...
- 【Kafka】Windows环境配置测试
一.配置 1.Java配置:JAVA_HOME路径不要有空格 2.下载/kafka_2.11-1.1.0,地址是https://www.apache.org/dyn/closer.cgi?path=/ ...
- 如何隐藏WooCommerce Shop Page页面的标题
有时我们不想显示WooCommerce Shop Page页面标题,如下图所示,需要如何操作呢?随ytkah一起来看看吧.在主题function.php文件中添加下面的代码就可以隐藏了 add_fil ...
- Nginx介绍(一)
Nginx (engine x) 是一个高性能的HTTP和反向代理web服务器,同时也提供了IMAP/POP3/SMTP服务. Nginx最大的特点是对高并发的支持和高效的负载均衡,在高并发的需求场景 ...